Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
101
102
103
104
105
106
107
108
109
110
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/101.jpg
"
pagenum
="
73
"/>
<
p
type
="
main
">
<
s
>
<
arrow.to.target
n
="
note49
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note49
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Nam in recta
<
emph
type
="
italics
"/>
MN
<
emph.end
type
="
italics
"/>
detur punctum
<
emph
type
="
italics
"/>
N,
<
emph.end
type
="
italics
"/>
& ubi punctum mobile
<
lb
/>
<
emph
type
="
italics
"/>
M
<
emph.end
type
="
italics
"/>
incidit in immotum
<
emph
type
="
italics
"/>
N,
<
emph.end
type
="
italics
"/>
incidat punctum mobile
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
in immo
<
lb
/>
tum
<
emph
type
="
italics
"/>
P,
<
emph.end
type
="
italics
"/>
Junge
<
emph
type
="
italics
"/>
CN, BN,
<
emph.end
type
="
italics
"/>
<
lb
/>
<
figure
id
="
id.039.01.101.1.jpg
"
xlink:href
="
039/01/101/1.jpg
"
number
="
47
"/>
<
lb
/>
<
emph
type
="
italics
"/>
CP, BP,
<
emph.end
type
="
italics
"/>
& a puncto
<
lb
/>
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
age rectas
<
emph
type
="
italics
"/>
PT, PR
<
emph.end
type
="
italics
"/>
<
lb
/>
occurrentes ipſis
<
emph
type
="
italics
"/>
BD,
<
lb
/>
CD
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
R,
<
emph.end
type
="
italics
"/>
& fa
<
lb
/>
cientes angulum
<
emph
type
="
italics
"/>
BPT
<
emph.end
type
="
italics
"/>
<
lb
/>
æqualem angulo dato
<
lb
/>
<
emph
type
="
italics
"/>
BNM,
<
emph.end
type
="
italics
"/>
& angulum
<
lb
/>
<
emph
type
="
italics
"/>
CPR
<
emph.end
type
="
italics
"/>
æqualem angu
<
lb
/>
gulo dato
<
emph
type
="
italics
"/>
CNM.
<
emph.end
type
="
italics
"/>
Cum
<
lb
/>
ergo (ex Hypotheſi)
<
lb
/>
æquales ſint anguli
<
lb
/>
<
emph
type
="
italics
"/>
MBD, NBP,
<
emph.end
type
="
italics
"/>
ut &
<
lb
/>
anguli
<
emph
type
="
italics
"/>
MCD, NCP
<
emph.end
type
="
italics
"/>
;
<
lb
/>
aufer communes
<
emph
type
="
italics
"/>
NBD
<
emph.end
type
="
italics
"/>
<
lb
/>
&
<
emph
type
="
italics
"/>
NCD,
<
emph.end
type
="
italics
"/>
& reſtabunt
<
lb
/>
æquales
<
emph
type
="
italics
"/>
NBM
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
PBT,
<
lb
/>
NCM
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
PCR:
<
emph.end
type
="
italics
"/>
adeoque triangula
<
emph
type
="
italics
"/>
NBM, PBT
<
emph.end
type
="
italics
"/>
ſimilia ſunt, ut
<
lb
/>
& triangula
<
emph
type
="
italics
"/>
NCM, PCR.
<
emph.end
type
="
italics
"/>
Quare
<
emph
type
="
italics
"/>
PT
<
emph.end
type
="
italics
"/>
eſt ad
<
emph
type
="
italics
"/>
NM
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
PB
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
<
emph
type
="
italics
"/>
NB,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
PR
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
NM
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
PC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
NC.
<
emph.end
type
="
italics
"/>
Sunt autem puncta
<
emph
type
="
italics
"/>
B, C, N, P
<
emph.end
type
="
italics
"/>
<
lb
/>
immobilia. </
s
>
<
s
>Ergo
<
emph
type
="
italics
"/>
PT
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
PR
<
emph.end
type
="
italics
"/>
datam habent rationem ad
<
emph
type
="
italics
"/>
NM,
<
emph.end
type
="
italics
"/>
pro
<
lb
/>
indeQ.E.D.tam rationem inter ſe; atque adeo, per Lemma xx,
<
lb
/>
punctum
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
(perpetuus rectarum mobilium
<
emph
type
="
italics
"/>
BT
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
CR
<
emph.end
type
="
italics
"/>
concurſus)
<
lb
/>
contingit ſectionem Conicam, per puncta
<
emph
type
="
italics
"/>
B, C, P
<
emph.end
type
="
italics
"/>
tranſeuntem.
<
lb
/>
<
emph
type
="
italics
"/>
Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Et contra, ſi punctum mobile
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
contingat ſectionem Conicam
<
lb
/>
tranſeuntem per data puncta
<
emph
type
="
italics
"/>
B, C, A,
<
emph.end
type
="
italics
"/>
& ſit angulus
<
emph
type
="
italics
"/>
DBM
<
emph.end
type
="
italics
"/>
ſemper
<
lb
/>
æqualis angulo dato
<
emph
type
="
italics
"/>
ABC,
<
emph.end
type
="
italics
"/>
& angulus
<
emph
type
="
italics
"/>
DCM
<
emph.end
type
="
italics
"/>
ſemper æqualis angu
<
lb
/>
lo dato
<
emph
type
="
italics
"/>
ACB,
<
emph.end
type
="
italics
"/>
& ubi punctum
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
incidit ſucceſſive in duo quævis ſe
<
lb
/>
ctionis puncta immobilia
<
emph
type
="
italics
"/>
p, P,
<
emph.end
type
="
italics
"/>
punctum mobile
<
emph
type
="
italics
"/>
M
<
emph.end
type
="
italics
"/>
incidat ſucceſſive
<
lb
/>
in puncta duo immobilia
<
emph
type
="
italics
"/>
n, N:
<
emph.end
type
="
italics
"/>
per eadem
<
emph
type
="
italics
"/>
n, N
<
emph.end
type
="
italics
"/>
agatur Recta
<
emph
type
="
italics
"/>
n N,
<
emph.end
type
="
italics
"/>
<
lb
/>
& hæc erit Locus perpetuus puncti illius mobilis
<
emph
type
="
italics
"/>
M.
<
emph.end
type
="
italics
"/>
Nam, ſi fieri
<
lb
/>
poteſt, verſetur punctum
<
emph
type
="
italics
"/>
M
<
emph.end
type
="
italics
"/>
in linea aliqua Curva. </
s
>
<
s
>Tanget ergo
<
lb
/>
punctum
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
ſectionem Conicam per puncta quinque
<
emph
type
="
italics
"/>
B, CA, p, P,
<
emph.end
type
="
italics
"/>
<
lb
/>
tranſeuntem, ubi punctum
<
emph
type
="
italics
"/>
M
<
emph.end
type
="
italics
"/>
perpetuo tangit lineam Curvam. </
s
>
<
s
>Sed
<
lb
/>
& ex jam demonſtratis tanget etiam punctum
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
ſectionem CoNI
<
lb
/>
cam per eadem quinque puncta
<
emph
type
="
italics
"/>
B, C, A, p, P
<
emph.end
type
="
italics
"/>
tranſeuntem, ubi pun-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>