Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
101
(81)
102
(82)
103
(83)
104
(84)
105
(85)
106
(86)
107
(87)
108
(88)
109
(89)
110
(90)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(85)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div205
"
type
="
section
"
level
="
1
"
n
="
132
">
<
pb
o
="
85
"
file
="
0105
"
n
="
105
"
rhead
="
LIBER I.
"/>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2106
"
xml:space
="
preserve
">Tres autem proximæ Propoſitiones etiam in meo Speculo Vſtorio de-
<
lb
/>
ſcriptæ fuerunt, cum & </
s
>
<
s
xml:id
="
echoid-s2107
"
xml:space
="
preserve
">ibi ijſdem indigerem, has verò hic repetere
<
lb
/>
volui, vt qui meum illud Speculum non viderunt, etiam ijſdem potiri
<
lb
/>
poſſint: </
s
>
<
s
xml:id
="
echoid-s2108
"
xml:space
="
preserve
">Aliqua tamen ex infraſcriptis nunc ex Archimede, & </
s
>
<
s
xml:id
="
echoid-s2109
"
xml:space
="
preserve
">eiuſdem
<
lb
/>
Commentatoribus ſumemus, vt iam oſtenſa, ne has demonſtrationes, quæ
<
lb
/>
apud præfatos Auctores videri poſſunt, fruſtra repetamus.</
s
>
<
s
xml:id
="
echoid-s2110
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div206
"
type
="
section
"
level
="
1
"
n
="
133
">
<
head
xml:id
="
echoid-head144
"
xml:space
="
preserve
">THEOREMA XXXVIII. PROPOS. XLI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2111
"
xml:space
="
preserve
">SI ſphęra, vel ſphęroides, conoides parabolicum, vel hy-
<
lb
/>
perbolicum planis ſecentur ad axem rectis, communes
<
lb
/>
ſectiones erunt circuli diametros in eadem figura ducta per
<
lb
/>
axem (quæ eſt illa, quę per reuolutionem creat dictum ſoli-
<
lb
/>
dum) ſitas habentes.</
s
>
<
s
xml:id
="
echoid-s2112
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2113
"
xml:space
="
preserve
">Patet hæc Propoſitio, nam ſupradicta ſunt ſolida rotunda, na-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0105-01
"
xlink:href
="
note-0105-01a
"
xml:space
="
preserve
">Defin. 6.
<
lb
/>
34. huius.</
note
>
ſcuntur .</
s
>
<
s
xml:id
="
echoid-s2114
"
xml:space
="
preserve
">n. </
s
>
<
s
xml:id
="
echoid-s2115
"
xml:space
="
preserve
">ex reuolutione figurarum circa axem.</
s
>
<
s
xml:id
="
echoid-s2116
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div208
"
type
="
section
"
level
="
1
"
n
="
134
">
<
head
xml:id
="
echoid-head145
"
xml:space
="
preserve
">THEOREMA XXXIX PROPOS. XLII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2117
"
xml:space
="
preserve
">SI conoides parabolicum plano ſecetur non quidem per a-
<
lb
/>
xem, neque æquidiſtanter axi, neque ad rectos angulos
<
lb
/>
cum axe, communis ſectio erit ellipſis, diameter verò ipſius
<
lb
/>
maior erit linea concepta in conoide ab interſectione facta
<
lb
/>
planorum, eius ſcilicet, quod ſecat figuram, & </
s
>
<
s
xml:id
="
echoid-s2118
"
xml:space
="
preserve
">eius, quod
<
lb
/>
ducitur recto per axem ad planum ſecans, minor verò diame-
<
lb
/>
ter æqualis erit diſtantiæ linearum ductarum æquidiſtanter
<
lb
/>
axi ab extremis diametri maioris.</
s
>
<
s
xml:id
="
echoid-s2119
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2120
"
xml:space
="
preserve
">Hæc oſtenditur ab Archimede lib. </
s
>
<
s
xml:id
="
echoid-s2121
"
xml:space
="
preserve
">de Conoidibus, & </
s
>
<
s
xml:id
="
echoid-s2122
"
xml:space
="
preserve
">Sphæroidi-
<
lb
/>
bus p. </
s
>
<
s
xml:id
="
echoid-s2123
"
xml:space
="
preserve
">13.</
s
>
<
s
xml:id
="
echoid-s2124
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div209
"
type
="
section
"
level
="
1
"
n
="
135
">
<
head
xml:id
="
echoid-head146
"
xml:space
="
preserve
">THEOREMA XL. PROPOS. XLIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2125
"
xml:space
="
preserve
">SI conoides hyperbolicum plano ſecetur coincidente in
<
lb
/>
omnia conilatera conoides compræhendentis non recto
<
lb
/>
ad axem; </
s
>
<
s
xml:id
="
echoid-s2126
"
xml:space
="
preserve
">ſectio erit ellipſis, diameter verò maior ipſius erit
<
lb
/>
concepta in conoide à ſectione facta planorum, alterius </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>