Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
101
102
103
104
105
106
107
108
109
110
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000688
">
<
pb
pagenum
="
68
"
xlink:href
="
028/01/108.jpg
"/>
percurri. </
s
>
<
s
id
="
s.000689
">Quippe & tametſi partes ſint incompara
<
lb
/>
biliter plures in ſemidiametro Mundi, quàm in ſpa
<
lb
/>
tiolo DE, ſunt tamen gradus velocitatis incompara
<
lb
/>
biliter etiam plures, ac proportione totidem; vt tem
<
lb
/>
pora ſubmultipla illis ſuperandis ſufficere valeant. </
s
>
<
s
id
="
s.000690
">Vt
<
lb
/>
breue faciam, erroris origo ex eo profluxiſſe videtur,
<
lb
/>
quòd merè gratis conſtiteris in parte AD, eiuſque
<
lb
/>
dimidio inferiore SD; & rem perinde habueris, ac ſi
<
lb
/>
dimidium ſuperius AS diuidi perinde non poſſet, ne
<
lb
/>
que haberet ſpeciatim dimidium eadem ratione, qua
<
lb
/>
habet AD. </
s
>
<
s
id
="
s.000691
">Proptereà enim accepiſti ſolùm omnia
<
lb
/>
deſignabilia punctaper totam DE, in quibus veloci
<
lb
/>
tas eſſet dupla velocitatis in totidem punctis per to
<
lb
/>
tam SD; neque reputaſti pergendum, vt haberes
<
lb
/>
eodem tenore puncta deſignabilia per totam SD, in
<
lb
/>
quibus velocitas eſſet dupla velocitatis in totidem
<
lb
/>
punctis deſignabilibus per totam PS, atque ita in in
<
lb
/>
finitum; vt prorsùs neceſſarium eſt ex tua ipſius ſup
<
lb
/>
poſitione. </
s
>
<
s
id
="
s.000692
">Quanquam res vberiùs cognoſcenda eſt
<
lb
/>
circa cæteras, quas deſcribis parteis. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000693
">XXXVII. </
s
>
<
s
id
="
s.000694
">Vt enim probes (reſumpto iam recen
<
lb
/>
tiore ſchemate) tempus per tertiam partem DE æqua
<
lb
/>
le eſſe tempori per trientem primæ partis IC,
<
emph
type
="
italics
"/>
Sumpto,
<
emph.end
type
="
italics
"/>
<
lb
/>
inquis, CN
<
emph
type
="
italics
"/>
æquali ipſi
<
emph.end
type
="
italics
"/>
CE,
<
emph
type
="
italics
"/>
erit tota
<
emph.end
type
="
italics
"/>
AD
<
emph
type
="
italics
"/>
diuiſa in
<
lb
/>
treis parteis æqualeis
<
emph.end
type
="
italics
"/>
AI, IN,
<
emph
type
="
italics
"/>
&
<
emph.end
type
="
italics
"/>
ND;
<
emph
type
="
italics
"/>
eritque veloci
<
lb
/>
tas in
<
emph.end
type
="
italics
"/>
D
<
emph
type
="
italics
"/>
ad velocitatem in
<
emph.end
type
="
italics
"/>
I,
<
emph
type
="
italics
"/>
vt tota
<
emph.end
type
="
italics
"/>
AD
<
emph
type
="
italics
"/>
ad ipſam
<
emph.end
type
="
italics
"/>
AI,
<
emph
type
="
italics
"/>
hoc
<
lb
/>
eſt tripla. </
s
>
<
s
id
="
s.000695
">Cumque ob eandem cauſſam velocitas quoque in
<
emph.end
type
="
italics
"/>
E
<
lb
/>
<
emph
type
="
italics
"/>
tripla etiam ſit velocitatis in
<
emph.end
type
="
italics
"/>
C,
<
emph
type
="
italics
"/>
erit velocitas per totam
<
emph.end
type
="
italics
"/>
DE
<
lb
/>
<
emph
type
="
italics
"/>
tripla velocitatis per totam
<
emph.end
type
="
italics
"/>
IC,
<
emph
type
="
italics
"/>
ſicut tota
<
emph.end
type
="
italics
"/>
DE
<
emph
type
="
italics
"/>
tripla eſt ipſius
<
emph.end
type
="
italics
"/>
<
lb
/>
IC;
<
emph
type
="
italics
"/>
ac proinde percurrentur
<
emph.end
type
="
italics
"/>
IC,
<
emph
type
="
italics
"/>
&
<
emph.end
type
="
italics
"/>
DE
<
emph
type
="
italics
"/>
æquali tempore.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>