Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
121
(101)
122
(102)
123
(103)
124
(104)
125
(105)
126
(106)
127
(107)
128
(108)
129
(109)
130
(110)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(105)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div256
"
type
="
section
"
level
="
1
"
n
="
170
">
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2523
"
xml:space
="
preserve
">
<
pb
o
="
105
"
file
="
0125
"
n
="
125
"
rhead
="
LIBER II.
"/>
per illi æquidiſtans, igitur huius plani moti, ſiue fluèntis conceptæ
<
lb
/>
in ſolido, ABC, figuræ, quæ in toto motu fieri intelliguntur, voco:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2524
"
xml:space
="
preserve
">Omnia plana ſolidi, ABC, ſumpta regula corum vno, quarum ali-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0125-01
"
xlink:href
="
note-0125-01a
"
xml:space
="
preserve
">_Defin.2._
<
lb
/>
_huius._</
note
>
qua repræſentare poſſunt plana, LH, PF, BC.</
s
>
<
s
xml:id
="
echoid-s2525
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2526
"
xml:space
="
preserve
">Vlterius duæ rectæ lineæ, ON, EM, occurrant planis per, EO,
<
lb
/>
BC, tranſeuntibus iam dictis in punctis, O, N; </
s
>
<
s
xml:id
="
echoid-s2527
"
xml:space
="
preserve
">EM, quarum, O
<
lb
/>
N, perpendiculariter, EM, verò obliquè illis incidat, puncta igi-
<
lb
/>
tur, quæ ſunt communes ſectiones omnium planorum ſ lidi, ABC,
<
lb
/>
productorum, ſiopus ſit, & </
s
>
<
s
xml:id
="
echoid-s2528
"
xml:space
="
preserve
">rectæ, ON, vocantur ipſius omnia pun-
<
lb
/>
cta recti tranſirus, quarum aliqua ſunt puncta, H, I, N, quæ in-
<
lb
/>
teripſa, & </
s
>
<
s
xml:id
="
echoid-s2529
"
xml:space
="
preserve
">extremum punctum, O, continentur, vt ipſæ, OH, OI,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0125-02
"
xlink:href
="
note-0125-02a
"
xml:space
="
preserve
">_Defin. 3._
<
lb
/>
_huius._</
note
>
ON, dicuntur abſciſſæ, quæ inter eadem puncta, & </
s
>
<
s
xml:id
="
echoid-s2530
"
xml:space
="
preserve
">aliud extre-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0125-03
"
xlink:href
="
note-0125-03a
"
xml:space
="
preserve
">_Def. 4._
<
lb
/>
_huius._</
note
>
mum, quod eſt, N, continentur, vt ipſæ, NI, NH, NO, reſiduæ
<
lb
/>
omnium abſciſſarum; </
s
>
<
s
xml:id
="
echoid-s2531
"
xml:space
="
preserve
">tot æquales ipſi, ON, quot ſunt omnes ab-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0125-04
"
xlink:href
="
note-0125-04a
"
xml:space
="
preserve
">_Def. 5._
<
lb
/>
_huius._</
note
>
ſciſſæ, ſiue reſiduæ omnium abſciſſarum, ON, dicuntur maximæ
<
lb
/>
abſciſſarum, ſiue omnium abſciſſarum, ON, quibus ſi adiung atur
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0125-05
"
xlink:href
="
note-0125-05a
"
xml:space
="
preserve
">_Defin. 6._
<
lb
/>
_huius._</
note
>
aliqua recta linea, dicuntur abſciſſæ, reſiduæ, ſiue maximæ adiun-
<
lb
/>
cta tali linea, omnes quidem recti tranſitus in recta, ON, in, EM,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0125-06
"
xlink:href
="
note-0125-06a
"
xml:space
="
preserve
">_Defin. 7._
<
lb
/>
_huius._</
note
>
verò dicuntur eiuſdem obliqui tranſitus, eius nempè, qui in tali in-
<
lb
/>
clinatione fit.</
s
>
<
s
xml:id
="
echoid-s2532
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2533
"
xml:space
="
preserve
">Dicitur autem in Coroll. </
s
>
<
s
xml:id
="
echoid-s2534
"
xml:space
="
preserve
">Defin. </
s
>
<
s
xml:id
="
echoid-s2535
"
xml:space
="
preserve
">3. </
s
>
<
s
xml:id
="
echoid-s2536
"
xml:space
="
preserve
">eadem puncta recti tranſitus,
<
lb
/>
ſiue obliqui, fieri tum ab omnibus planis propoſiti ſolidi, vt, ABC,
<
lb
/>
<
figure
xlink:label
="
fig-0125-01
"
xlink:href
="
fig-0125-01a
"
number
="
67
">
<
image
file
="
0125-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0125-01
"/>
</
figure
>
tum ab omnibus lineis
<
lb
/>
planiper eaſdem inciden-
<
lb
/>
tes extenſi, vt ex. </
s
>
<
s
xml:id
="
echoid-s2537
"
xml:space
="
preserve
">gr. </
s
>
<
s
xml:id
="
echoid-s2538
"
xml:space
="
preserve
">pla-
<
lb
/>
ni, quod tranſit per, EO,
<
lb
/>
BC, quod quidem ctiam
<
lb
/>
tranſeat per ipſas, ON,
<
lb
/>
EM, idem enim planum,
<
lb
/>
quod in ſolidum, ABC,
<
lb
/>
producit figuram, LH, in
<
lb
/>
figura plana, ABC, producit rectam, LH, & </
s
>
<
s
xml:id
="
echoid-s2539
"
xml:space
="
preserve
">in recta, ON, pun-
<
lb
/>
ctum, H, in, EM, verò punctum, γ, quod tranſit, HL, produ-
<
lb
/>
cta, & </
s
>
<
s
xml:id
="
echoid-s2540
"
xml:space
="
preserve
">ideò dico puncta, H, γ, poſſe dici etiam effecta àresta, γ,
<
lb
/>
H, & </
s
>
<
s
xml:id
="
echoid-s2541
"
xml:space
="
preserve
">ſic omnia puncta recti tranſitus quę nempè ſunt in, ON, ne-
<
lb
/>
dum fieri à dictis planis parallelis ſed etiam à lineis parallelis </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>