Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
131
132
133
134
135
136
137
138
139
140
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/137.jpg
"
pagenum
="
109
"/>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Caſ.
<
emph.end
type
="
italics
"/>
1. Jam ſi Figura
<
emph
type
="
italics
"/>
DES
<
emph.end
type
="
italics
"/>
Circulus eſt vel Hyperbola, biſece
<
lb
/>
<
arrow.to.target
n
="
note85
"/>
tur ejus tranſverſa diameter
<
emph
type
="
italics
"/>
AS
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
O,
<
emph.end
type
="
italics
"/>
& erit
<
lb
/>
<
figure
id
="
id.039.01.137.1.jpg
"
xlink:href
="
039/01/137/1.jpg
"
number
="
84
"/>
<
lb
/>
<
emph
type
="
italics
"/>
SO
<
emph.end
type
="
italics
"/>
dimidium lateris recti. </
s
>
<
s
>Et quoniam eſt
<
lb
/>
<
emph
type
="
italics
"/>
TC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
TD
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
Cc
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
Dd,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
TD
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
TS
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
<
emph
type
="
italics
"/>
CD
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SY,
<
emph.end
type
="
italics
"/>
erit ex æquo
<
emph
type
="
italics
"/>
TC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
TS
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
<
emph
type
="
italics
"/>
CDXCc
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SYXDd.
<
emph.end
type
="
italics
"/>
Sed per Corol. </
s
>
<
s
>1. Prop. </
s
>
<
s
>
<
lb
/>
XXXIII, eſt
<
emph
type
="
italics
"/>
TC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
TS
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
AO,
<
emph.end
type
="
italics
"/>
puta ſi
<
lb
/>
in coitu punctorum
<
emph
type
="
italics
"/>
D, d
<
emph.end
type
="
italics
"/>
capiantur linearum
<
lb
/>
rationes ultimæ. </
s
>
<
s
>Ergo
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
eſt ad (
<
emph
type
="
italics
"/>
AO
<
emph.end
type
="
italics
"/>
ſeu)
<
emph
type
="
italics
"/>
SK
<
emph.end
type
="
italics
"/>
<
lb
/>
ut
<
emph
type
="
italics
"/>
CDXCc
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SYXDd.
<
emph.end
type
="
italics
"/>
Porro corporis
<
lb
/>
deſcendentis velocitas in
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
eſt ad velocitatem
<
lb
/>
corporis Circulum intervallo
<
emph
type
="
italics
"/>
SC
<
emph.end
type
="
italics
"/>
circa cen
<
lb
/>
trum
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
deſcribentis in ſubduplicata ratione
<
lb
/>
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
ad (
<
emph
type
="
italics
"/>
AO
<
emph.end
type
="
italics
"/>
vel)
<
emph
type
="
italics
"/>
SK
<
emph.end
type
="
italics
"/>
(per Prop. </
s
>
<
s
>XXXIII.) Et
<
lb
/>
hæc velocitas ad velocitatem corporis deſcri
<
lb
/>
bentis Circulum
<
emph
type
="
italics
"/>
OKk
<
emph.end
type
="
italics
"/>
in ſubduplicata ratione
<
lb
/>
<
emph
type
="
italics
"/>
SK
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SC
<
emph.end
type
="
italics
"/>
per Cor. </
s
>
<
s
>6. Prop. </
s
>
<
s
>IV, & ex æquo velo
<
lb
/>
citas prima ad ultimam, hoc eſt lineola
<
emph
type
="
italics
"/>
Cc
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
arcum
<
emph
type
="
italics
"/>
Kk
<
emph.end
type
="
italics
"/>
in ſubduplicata ratione
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SC,
<
emph.end
type
="
italics
"/>
<
lb
/>
id eſt in ratione
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
CD.
<
emph.end
type
="
italics
"/>
Quare eſt
<
emph
type
="
italics
"/>
CDXCc
<
emph.end
type
="
italics
"/>
<
lb
/>
æquale
<
emph
type
="
italics
"/>
ACXKk,
<
emph.end
type
="
italics
"/>
& propterea
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SK
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
<
emph
type
="
italics
"/>
ACXKk
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SYXDd,
<
emph.end
type
="
italics
"/>
<
expan
abbr
="
indeq;
">indeque</
expan
>
<
emph
type
="
italics
"/>
SKXKk
<
emph.end
type
="
italics
"/>
æqua
<
lb
/>
le
<
emph
type
="
italics
"/>
SYXDd,
<
emph.end
type
="
italics
"/>
& 1/2
<
emph
type
="
italics
"/>
SKXKk
<
emph.end
type
="
italics
"/>
æquale 1/2
<
emph
type
="
italics
"/>
SYXDd,
<
emph.end
type
="
italics
"/>
<
lb
/>
id eſt area
<
emph
type
="
italics
"/>
KSk
<
emph.end
type
="
italics
"/>
æqualis areæ
<
emph
type
="
italics
"/>
SDd.
<
emph.end
type
="
italics
"/>
Singulis
<
lb
/>
igitur temporis particulis generantur arearum
<
lb
/>
duarum particulæ
<
emph
type
="
italics
"/>
KSk,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
SDd,
<
emph.end
type
="
italics
"/>
quæ, ſi mag
<
lb
/>
nitudo earum minuatur & numerus augeatur in infinitum, ratio
<
lb
/>
nem obtinent æqualitatis, & propterea (per Corollarium Lem
<
lb
/>
matis IV) areæ totæ ſimul genitæ ſunt ſemper æquales,
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note85
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Caſ.
<
emph.end
type
="
italics
"/>
2. Quod ſi Figura
<
emph
type
="
italics
"/>
DES
<
emph.end
type
="
italics
"/>
Parabola ſit, invenietur eſſe ut ſu
<
lb
/>
pra
<
emph
type
="
italics
"/>
CDXCc
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SYXDd
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
TC
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
TS,
<
emph.end
type
="
italics
"/>
hoc eſt ut 2 ad 1, ad
<
lb
/>
eoque 1/4
<
emph
type
="
italics
"/>
CDXCc
<
emph.end
type
="
italics
"/>
æquale eſſe 1/2
<
emph
type
="
italics
"/>
SYXDd.
<
emph.end
type
="
italics
"/>
Sed corporis caden
<
lb
/>
tis velocitas in
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
æqualis eſt velocitati qua Circulus intervallo 1/2
<
emph
type
="
italics
"/>
SC
<
emph.end
type
="
italics
"/>
<
lb
/>
uniformiter deſcribi poſſit (per Prop. </
s
>
<
s
>XXXIV) Et hæc velocitas ad ve
<
lb
/>
locitatem qua Circulus radio
<
emph
type
="
italics
"/>
SK
<
emph.end
type
="
italics
"/>
deſcribi poſſit, hoc eſt, lineola
<
lb
/>
<
emph
type
="
italics
"/>
Cc
<
emph.end
type
="
italics
"/>
ad arcum
<
emph
type
="
italics
"/>
Kk
<
emph.end
type
="
italics
"/>
(per Corol. </
s
>
<
s
>6. Prop. </
s
>
<
s
>IV) eſt in ſubduplicata ratione
<
lb
/>
<
emph
type
="
italics
"/>
SK
<
emph.end
type
="
italics
"/>
ad 1/2
<
emph
type
="
italics
"/>
SC,
<
emph.end
type
="
italics
"/>
id eſt, in ratione
<
emph
type
="
italics
"/>
SK
<
emph.end
type
="
italics
"/>
ad 1/2
<
emph
type
="
italics
"/>
CD.
<
emph.end
type
="
italics
"/>
Quare eſt 1/2
<
emph
type
="
italics
"/>
SKXKk
<
emph.end
type
="
italics
"/>
<
lb
/>
æquale 1/4
<
emph
type
="
italics
"/>
CDXCc,
<
emph.end
type
="
italics
"/>
adeoque æquale 1/2
<
emph
type
="
italics
"/>
SYXDd,
<
emph.end
type
="
italics
"/>
hoc eſt, area
<
emph
type
="
italics
"/>
KSk
<
emph.end
type
="
italics
"/>
<
lb
/>
æqualis areæ
<
emph
type
="
italics
"/>
SDd,
<
emph.end
type
="
italics
"/>
ut ſupra.
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>