Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
131
132
133
134
135
136
137
138
139
140
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/139.jpg
"
pagenum
="
111
"/>
Dein junctis
<
emph
type
="
italics
"/>
SI, SD,
<
emph.end
type
="
italics
"/>
fiant ſegmentis
<
emph
type
="
italics
"/>
SEIS, SEDS,
<
emph.end
type
="
italics
"/>
ſec
<
lb
/>
<
arrow.to.target
n
="
note87
"/>
tores
<
emph
type
="
italics
"/>
HSK, HSk
<
emph.end
type
="
italics
"/>
æquales, & per Prop. </
s
>
<
s
>XXXV, corpus
<
emph
type
="
italics
"/>
G
<
emph.end
type
="
italics
"/>
deſcri
<
lb
/>
bet ſpatium
<
emph
type
="
italics
"/>
GC
<
emph.end
type
="
italics
"/>
eodem Tempore quo corpus
<
emph
type
="
italics
"/>
K
<
emph.end
type
="
italics
"/>
deſcribere po
<
lb
/>
teſt arcum
<
emph
type
="
italics
"/>
Kk. </
s
>
<
s
>
<
expan
abbr
="
q.
">que</
expan
>
E. F.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note87
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XXXVIII. THEOREMA XII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Poſito quod Vis centripeta proportionalis ſit altitudini ſeu diſtantiæ lo
<
lb
/>
eorum a centro, dico quod cadentium Tempora, Velocitates & Spa
<
lb
/>
tia deſcripta ſunt arcubus, arcuumque finibus rectis & ſinibus
<
lb
/>
verſis reſpective proportionalia.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Cadat corpus de loco quovis
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
ſecun
<
lb
/>
<
figure
id
="
id.039.01.139.1.jpg
"
xlink:href
="
039/01/139/1.jpg
"
number
="
87
"/>
<
lb
/>
dum rectam
<
emph
type
="
italics
"/>
AS
<
emph.end
type
="
italics
"/>
; & centro virium
<
emph
type
="
italics
"/>
S,
<
emph.end
type
="
italics
"/>
in
<
lb
/>
tervallo
<
emph
type
="
italics
"/>
AS,
<
emph.end
type
="
italics
"/>
deſcribatur Circuli quadrans
<
lb
/>
<
emph
type
="
italics
"/>
AE,
<
emph.end
type
="
italics
"/>
ſitque
<
emph
type
="
italics
"/>
CD
<
emph.end
type
="
italics
"/>
ſinus rectus arcus cujuſ
<
lb
/>
vis
<
emph
type
="
italics
"/>
AD
<
emph.end
type
="
italics
"/>
; & corpus
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
Tempore
<
emph
type
="
italics
"/>
AD,
<
emph.end
type
="
italics
"/>
ca
<
lb
/>
dendo deſcribet Spatium
<
emph
type
="
italics
"/>
AC,
<
emph.end
type
="
italics
"/>
inque loco
<
lb
/>
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
acquiret Velocitatem
<
emph
type
="
italics
"/>
CD.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Demonſtratur eodem modo ex Propoſi
<
lb
/>
tione X, quo Propoſitio XXXII, ex Propo
<
lb
/>
ſitione XI demonſtrata fuit. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Hinc æqualia ſunt Tempora quibus corpus unum de loco
<
lb
/>
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
cadendo pervenit ad centrum
<
emph
type
="
italics
"/>
S,
<
emph.end
type
="
italics
"/>
& corpus aliud revolvendo de
<
lb
/>
ſcribit arcum quadrantalem
<
emph
type
="
italics
"/>
ADE.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
2. Proinde æqualia ſunt Tempora omnia quibus corpora de
<
lb
/>
locis quibuſvis ad uſque centrum cadunt. </
s
>
<
s
>Nam revolventium tem
<
lb
/>
pora omnia periodica (per Corol. </
s
>
<
s
>3. Prop. </
s
>
<
s
>IV.) æquantur. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>