Gassendi, Pierre, De proportione qua gravia decidentia accelerantur, 1646

List of thumbnails

< >
131
131
132
132
133
133
134
134
135
135
136
136
137
137
138
138
139
139
140
140
< >
page |< < of 360 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000868">
                <pb pagenum="99" xlink:href="028/01/139.jpg"/>
                <emph type="italics"/>
              angulorum æqualitate, ita fluentem, ac deſcenden­
                <lb/>
              tem concipi postulas, vt etiam intelligamus partem inter
                <lb/>
              lineas
                <emph.end type="italics"/>
              AB, AC,
                <emph type="italics"/>
              interceptam continuò ea ratione augeri,
                <lb/>
              vt notatis in
                <emph.end type="italics"/>
              AB,
                <emph type="italics"/>
              &
                <emph.end type="italics"/>
              AC,
                <emph type="italics"/>
              partibus æqualibus
                <emph.end type="italics"/>
              AE, EG,
                <lb/>
              GI, IL,
                <emph type="italics"/>
              ſemper interceptarum parallelarum incrementa
                <lb/>
              haberi æqualia aduertamus. </s>
              <s id="s.000869">Nempe vt
                <emph.end type="italics"/>
              AG
                <emph type="italics"/>
              dupla est
                <lb/>
              ipſius
                <emph.end type="italics"/>
              AE,
                <emph type="italics"/>
              ſic
                <emph.end type="italics"/>
              GF
                <emph type="italics"/>
              dupla est ipſius
                <emph.end type="italics"/>
              ED:
                <emph type="italics"/>
              & eadem ratione
                <emph.end type="italics"/>
                <lb/>
              IH
                <emph type="italics"/>
              eiuſdem
                <emph.end type="italics"/>
              ED
                <emph type="italics"/>
              eſt tripla, &
                <emph.end type="italics"/>
              LK
                <emph type="italics"/>
              quadrupla, atque
                <lb/>
              ita deinceps. </s>
              <s id="s.000870">Ex quibus ita concludis:
                <emph.end type="italics"/>
              Quare aſſumptis
                <lb/>
              partibus æqualibus temporis per parteis æqualeis lineæ
                <lb/>
              AC repræſentatis, notum eſt momenta, ſeu incremen­
                <lb/>
              ta velocitatis per parallelas repræſentatæ æqualia ac­
                <lb/>
              quiri ſub huiuſmodi partibus.
                <emph type="italics"/>
              Hæc ſanè vera ſunt;
                <lb/>
              ſed recordare verißimè quoque à te dictum numero
                <emph.end type="italics"/>
              IV.
                <emph type="italics"/>
              pun­
                <lb/>
              ctum
                <emph.end type="italics"/>
              A
                <emph type="italics"/>
              poſſe non tantum pro initio temporis haberi, ſed etiam
                <lb/>
              pro initio spatij, & (vt item addis) pro initio velocitatis.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s id="s.000871">Recordor; ſed adnoto ſimul habuiſſe me punctum
                <lb/>
              A, pro initio temporis quidem æquabiliter ſluentis,
                <lb/>
              prout comparatur ad lineam AC (aut AB) in parteis
                <lb/>
              æqualeis diuiſam; pro initio verò ſpatij in longum de­
                <lb/>
              currendi, prout comparatur ad aream AKL in trian­
                <lb/>
              gulos æqualeis diſtinctam; ac pro initio velocitatis
                <lb/>
              continenter acquirendæ, prout comparatur cum linea
                <lb/>
              parteis æqualeis continuò adſciſcente, quovſque cœ­
                <lb/>
              pta à puncto A, euadat KL. </s>
            </p>
            <p type="main">
              <s id="s.000872">
                <emph type="italics"/>
              Vt igitur punctum
                <emph.end type="italics"/>
              A,
                <emph type="italics"/>
              nunc habes pro initio temporis,
                <lb/>
              & parteis æqualeis
                <emph.end type="italics"/>
              AE, EG, GI, IL,
                <emph type="italics"/>
              pro partibus
                <lb/>
              æqualibus temporis; concipe etiam vicißim idem punctum
                <emph.end type="italics"/>
              A
                <lb/>
                <emph type="italics"/>
              initium eſſe ſpatij, cuius parteis æqualeis æqualia item ſeg­
                <lb/>
              menta
                <emph.end type="italics"/>
              AE, EG, GI, IL,
                <emph type="italics"/>
              deſignent. </s>
              <s id="s.000873">Quo poſito, tam
                <emph.end type="italics"/>
              </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>