Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
131
132
133
134
135
136
137
138
139
140
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000873
">
<
pb
pagenum
="
100
"
xlink:href
="
028/01/140.jpg
"/>
<
emph
type
="
italics
"/>
notum erit, quàm anteà momenta, ſeu incrementa velocitatis
<
lb
/>
per parallelas
<
emph.end
type
="
italics
"/>
ED, GE, IH
<
emph
type
="
italics
"/>
&
<
emph.end
type
="
italics
"/>
LK
<
emph
type
="
italics
"/>
repræ|entatæ. </
s
>
<
s
id
="
s.000874
">æqualia
<
lb
/>
ſub huiuſmodi partibus acquiri. </
s
>
<
s
id
="
s.000875
">Cùm igitur in vtraque
<
lb
/>
hypotheſi eadem omninò velocitatis acceleratio habeatur, cur
<
lb
/>
prior à te constituta perfectam omnibus numeris
<
emph.end
type
="
italics
"/>
G
<
emph
type
="
italics
"/>
alilei de
<
lb
/>
finitionem oſtendat; vulgatam autem defi utionem poſterior
<
lb
/>
hypotheſis pari ratione perfectam non euincat?
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000876
">Cauſſam inſinuaui tum mox, tum verbis illis, quæ
<
lb
/>
præmiſeram,
<
emph
type
="
italics
"/>
Quippe meminiſſe, aut potiùs adnotaſſe dili
<
lb
/>
genter oportet agi heic de motu æquabiliter accelerato, ſiue
<
lb
/>
cuius celeritas continenter, vniformiterque increſcat, neque
<
lb
/>
vllum ſit momentum conſequentis temporis, in quo motus non
<
lb
/>
ſit velocior, quàm in quouis antecedente, & in quo non eadem
<
lb
/>
ratione ipſa velocitas augeatur.
<
emph.end
type
="
italics
"/>
</
s
>
<
s
id
="
s.000877
"> Nempe memini
<
emph
type
="
italics
"/>
Tempo
<
lb
/>
ris,
<
emph.end
type
="
italics
"/>
ob rationem poſteà deductam, vbi tu primùm de
<
lb
/>
eo egiſti, admonendo fuiſſe originem mali, quòd in
<
lb
/>
definitione vulgari, ſeu tua nulla eſſet facta
<
expan
abbr
="
mẽtio
">mentio</
expan
>
tem
<
lb
/>
poris, ſine quo tamen neque celeritas, neque accele
<
lb
/>
ratio (& maximè quidem vniformis) intelligi poſſit.
<
lb
/>
</
s
>
<
s
id
="
s.000878
">Obieci illeic,
<
emph
type
="
italics
"/>
Si velocitas attendatur ſolùm penes ſpatia,
<
lb
/>
debere ſemper id mobile, quod decem percurrerit ſtadia, dici
<
lb
/>
moueri celeriter, & ſemper id, quod vnicum percurrerit, tar
<
lb
/>
dè, cum contingere tamen poßit, vt quod percurrit vnicum,
<
lb
/>
moueatur decuplò velociùs, quàm illud, quod percurrit decem.
<
emph.end
type
="
italics
"/>
<
lb
/>
Addo heic ſolùm; ſi AC ſit ſpatium, & mobile diſce
<
lb
/>
dens ab A acceleretur vſque ad E per parteis integri
<
lb
/>
minuti; & motu non interrupto accelerari pergat ab
<
lb
/>
E in G, ſed per parteis integræ horæ; ac rursùs motu
<
lb
/>
non interrupto accelerari pergat à G in I, ſed per par
<
lb
/>
teis integri ſecundi; rurſuſque etiam non interrupto </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>