Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
141
(121)
142
(122)
143
(123)
144
(124)
145
(125)
146
(126)
147
(127)
148
(128)
149
(129)
150
(130)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(121)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div298
"
type
="
section
"
level
="
1
"
n
="
186
">
<
pb
o
="
121
"
file
="
0141
"
n
="
141
"
rhead
="
LIBER II.
"/>
<
p
>
<
s
xml:id
="
echoid-s2848
"
xml:space
="
preserve
">Sint igitur parallelogramma, AM, MC, in eadem altitudine. </
s
>
<
s
xml:id
="
echoid-s2849
"
xml:space
="
preserve
">Di-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0141-01
"
xlink:href
="
note-0141-01a
"
xml:space
="
preserve
">A. Deſ. 8.
<
lb
/>
huius.</
note
>
co omnia quadrata parallelogrammi, AM, ad omnia quadrata pa-
<
lb
/>
rallelogrammi, MC, regula, GH, eſſe vt quadratum, GM, ad
<
lb
/>
quadratum, MH. </
s
>
<
s
xml:id
="
echoid-s2850
"
xml:space
="
preserve
">Sit intra parallelogramma, AM, MC, ducta
<
lb
/>
vtcunque, DI, parallela ipſi, GH, cuius portio, DE, maneat in,
<
lb
/>
<
figure
xlink:label
="
fig-0141-01
"
xlink:href
="
fig-0141-01a
"
number
="
81
">
<
image
file
="
0141-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0141-01
"/>
</
figure
>
AM, &</
s
>
<
s
xml:id
="
echoid-s2851
"
xml:space
="
preserve
">, EI, in, BH, quoniam ergo, D
<
lb
/>
E, eſt æqualis ipſi, GM, figurę autem pla-
<
lb
/>
næ ſimiles deicriptæ à lateribus, vel lineis
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0141-02
"
xlink:href
="
note-0141-02a
"
xml:space
="
preserve
">25. lib. 1.</
note
>
homologis æqualibus ſunt æquales, & </
s
>
<
s
xml:id
="
echoid-s2852
"
xml:space
="
preserve
">ideò
<
lb
/>
quadratum, DE, erit æquale quadrato, G
<
lb
/>
M, & </
s
>
<
s
xml:id
="
echoid-s2853
"
xml:space
="
preserve
">quadratum, EI, quadrato, MH,
<
lb
/>
ergo, vt quadratum, GM, ad quadratum,
<
lb
/>
MH, ita erit quadratum, DE, ad quadratum, EI, & </
s
>
<
s
xml:id
="
echoid-s2854
"
xml:space
="
preserve
">quia, DI, vt-
<
lb
/>
cunq; </
s
>
<
s
xml:id
="
echoid-s2855
"
xml:space
="
preserve
">ducta eſt parallela ipſi, GH, ideò, vt vnum ad vnum, ita om-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0141-03
"
xlink:href
="
note-0141-03a
"
xml:space
="
preserve
">Coroll. 4.
<
lb
/>
huius.</
note
>
nia ad omnia idelt vt quadratum, GM, ad quadratum, MH, ita
<
lb
/>
erunt omnia quadrata parallelogrammi, AM, ad omnia quadrata
<
lb
/>
parallelogrammi, MC, regula, GH, quod erat oſtendendum.</
s
>
<
s
xml:id
="
echoid-s2856
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div301
"
type
="
section
"
level
="
1
"
n
="
187
">
<
head
xml:id
="
echoid-head202
"
xml:space
="
preserve
">COROLLARIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s2857
"
xml:space
="
preserve
">_H_Inc patet, ſi vice quadratorum ſumamus alias quaſcunque figuras
<
lb
/>
ſimiles, quod eodem pacto oſtendemus omnes figuras ſimiles pa-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0141-04
"
xlink:href
="
note-0141-04a
"
xml:space
="
preserve
">_A. Def. 8._
<
lb
/>
_huius._</
note
>
rallelogrammi, AM, ad omnes ſimiles figuras parallelogrammi, MC,
<
lb
/>
vt ex. </
s
>
<
s
xml:id
="
echoid-s2858
"
xml:space
="
preserve
">gr. </
s
>
<
s
xml:id
="
echoid-s2859
"
xml:space
="
preserve
">omnes circutos parallelogrammi, AM, ad omnes circulos pa-
<
lb
/>
rallelogrammi, MC, eſſe vt ſimiles ſiguras ab ipſis b ſibus, GM, MH,
<
lb
/>
d@ſcriptas, nam fi uræ planæ ſimiles quæcunq; </
s
>
<
s
xml:id
="
echoid-s2860
"
xml:space
="
preserve
">vt dictum eſt, deſcriptæ à
<
lb
/>
lateribus, vel lineis homologis æqualibus ſunt æquales; </
s
>
<
s
xml:id
="
echoid-s2861
"
xml:space
="
preserve
">omnibus pari-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0141-05
"
xlink:href
="
note-0141-05a
"
xml:space
="
preserve
">_25. lib. 1._</
note
>
ter aſſumptis figuris ſimilibus, regula eadem, GH.</
s
>
<
s
xml:id
="
echoid-s2862
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div303
"
type
="
section
"
level
="
1
"
n
="
188
">
<
head
xml:id
="
echoid-head203
"
xml:space
="
preserve
">THEOREMA X. PROPOS. X.</
head
>
<
p
>
<
s
xml:id
="
echoid-s2863
"
xml:space
="
preserve
">PArellelogrammorum in eadem baſiexiſtentium omnia
<
lb
/>
quadrata, regula ipſa baſi, ſunt vt altitudines, vel vt la-
<
lb
/>
tera, quę æqualiter baſi ſunt inclinata, ſi illa ſint ęquiangula.</
s
>
<
s
xml:id
="
echoid-s2864
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s2865
"
xml:space
="
preserve
">Sint parallelogramma, AD, BD, in eadem b ſi, CD, exiſten-
<
lb
/>
tia, quorum ſint altitudines iuxta baſim, CD, ſumptæ, AO, CN.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s2866
"
xml:space
="
preserve
">Dico omnia quadrata parallelogrammi, AD, adomnia quadrata
<
lb
/>
parallelogrammi, BD, regula, CD, eſſe vt, AO, ad, CN, vel
<
lb
/>
etiam vt, AC, ad, CB, ſi parallelogramma, BD, DA, fuerint æ-
<
lb
/>
quiangula, producantur autem, CA, CB, indefinitè ad partes </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>