Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
141
142
143
144
145
146
147
148
149
150
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/142.jpg
"
pagenum
="
114
"/>
<
arrow.to.target
n
="
note90
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note90
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
3. Tempus quoQ.E.I.noteſcet erigendo ordinatam
<
emph
type
="
italics
"/>
em
<
emph.end
type
="
italics
"/>
re
<
lb
/>
ciproce proportionalem lateri quadrato ex
<
emph
type
="
italics
"/>
PQRD
<
emph.end
type
="
italics
"/>
+vel-
<
emph
type
="
italics
"/>
DFge,
<
emph.end
type
="
italics
"/>
<
lb
/>
& capiendo tempus quo corpus deſcripſit lineam
<
emph
type
="
italics
"/>
De
<
emph.end
type
="
italics
"/>
ad tempus
<
lb
/>
quo corpus alterum vi uniformi cecidit a
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
& cadendo pervenit ad
<
lb
/>
<
emph
type
="
italics
"/>
D,
<
emph.end
type
="
italics
"/>
ut area curvilinea
<
emph
type
="
italics
"/>
DLme
<
emph.end
type
="
italics
"/>
ad rectangulum 2
<
emph
type
="
italics
"/>
PDXDL.
<
emph.end
type
="
italics
"/>
Nam
<
lb
/>
que tempus quo corpus vi uniformi deſcendens deſcripſit lineam
<
lb
/>
<
emph
type
="
italics
"/>
PD
<
emph.end
type
="
italics
"/>
eſt ad tempus quo corpus idem deſcripſit lineam
<
emph
type
="
italics
"/>
PE
<
emph.end
type
="
italics
"/>
in ſub
<
lb
/>
duplicata ratione
<
emph
type
="
italics
"/>
PD
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PE,
<
emph.end
type
="
italics
"/>
id eſt (lineola
<
emph
type
="
italics
"/>
DE
<
emph.end
type
="
italics
"/>
jamjam naſcen
<
lb
/>
te) in ratione
<
emph
type
="
italics
"/>
PD
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PD
<
emph.end
type
="
italics
"/>
+1/2
<
emph
type
="
italics
"/>
DE
<
emph.end
type
="
italics
"/>
ſeu 2
<
emph
type
="
italics
"/>
PD
<
emph.end
type
="
italics
"/>
ad 2
<
emph
type
="
italics
"/>
PD+DE,
<
emph.end
type
="
italics
"/>
<
lb
/>
& diviſim, ad tempus quo corpus idem deſcripſit lineolam
<
emph
type
="
italics
"/>
DE
<
emph.end
type
="
italics
"/>
<
lb
/>
ut 2
<
emph
type
="
italics
"/>
PD
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
DE,
<
emph.end
type
="
italics
"/>
adeoque ut rectangulum 2
<
emph
type
="
italics
"/>
PDXDL
<
emph.end
type
="
italics
"/>
ad aream
<
lb
/>
<
emph
type
="
italics
"/>
DLME
<
emph.end
type
="
italics
"/>
; eſtque tempus quo corpus utrumQ.E.D.ſcripſit lineo
<
lb
/>
lam
<
emph
type
="
italics
"/>
DE
<
emph.end
type
="
italics
"/>
ad tempus quo corpus alterum inæquabili motu deſcrip
<
lb
/>
ſit lineam
<
emph
type
="
italics
"/>
De
<
emph.end
type
="
italics
"/>
ut area
<
emph
type
="
italics
"/>
DLME
<
emph.end
type
="
italics
"/>
ad aream
<
emph
type
="
italics
"/>
DLme,
<
emph.end
type
="
italics
"/>
& ex æquo
<
lb
/>
tempus primum ad tempus ultimum ut rectangulum 2
<
emph
type
="
italics
"/>
PDXDL
<
emph.end
type
="
italics
"/>
<
lb
/>
ad aream
<
emph
type
="
italics
"/>
DLme.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
SECTIO VIII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
De Inventione Orbium in quibus corpora Viribus quibuſcunque cen
<
lb
/>
tripetis agitata revolvuntur.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XL. THEOREMA XIII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si corpus, cogente Vi quacunque centripeta, moveatur utcunque, &
<
lb
/>
corpus aliud recta aſcendat vel deſcendat, ſintque eorum Velocita
<
lb
/>
tes in aliquo æqualium altitudinum caſu æquales, Velocitates eorum
<
lb
/>
in omnibus æqualibus altitudinibus erunt æquales.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Deſcendat corpus aliquod ab
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
per
<
emph
type
="
italics
"/>
D, E,
<
emph.end
type
="
italics
"/>
ad centrum
<
emph
type
="
italics
"/>
C,
<
emph.end
type
="
italics
"/>
&
<
lb
/>
moveatur corpus aliud a
<
emph
type
="
italics
"/>
V
<
emph.end
type
="
italics
"/>
in linea curva
<
emph
type
="
italics
"/>
VIKk,
<
emph.end
type
="
italics
"/>
Centro
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
in
<
lb
/>
tervallis quibuſvis deſcribantur circuli concentrici
<
emph
type
="
italics
"/>
DI, EK
<
emph.end
type
="
italics
"/>
rectæ
<
lb
/>
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
E,
<
emph.end
type
="
italics
"/>
curvæque
<
emph
type
="
italics
"/>
VIK
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
K
<
emph.end
type
="
italics
"/>
occurrentes. </
s
>
<
s
>Junga
<
lb
/>
tur
<
emph
type
="
italics
"/>
IC
<
emph.end
type
="
italics
"/>
occurrens ipſi
<
emph
type
="
italics
"/>
KE
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
N;
<
emph.end
type
="
italics
"/>
& in
<
emph
type
="
italics
"/>
IK
<
emph.end
type
="
italics
"/>
demittatur perpendi
<
lb
/>
culum
<
emph
type
="
italics
"/>
NT
<
emph.end
type
="
italics
"/>
; ſitque circumferentiarum circulorum intervallum
<
emph
type
="
italics
"/>
DE
<
emph.end
type
="
italics
"/>
<
lb
/>
vel
<
emph
type
="
italics
"/>
IN
<
emph.end
type
="
italics
"/>
quam minimum, & habeant corpora in
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
velocita-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>