Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
141
142
143
144
145
146
147
148
149
150
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000892
">
<
pb
pagenum
="
103
"
xlink:href
="
028/01/143.jpg
"/>
tempore mobile ſit peruenturum ad G? </
s
>
<
s
id
="
s.000893
">An dices
<
lb
/>
ſolùm quanto tempore peruenerit ex A in E? Atqui,
<
lb
/>
vt faceret, oporteret velocitatem non totam permane
<
lb
/>
re, ſed ſenſim deminur, vt ſi deminutio fieret ſecun
<
lb
/>
dum triangulum DPE: quippe hoc ſolùm modo
<
lb
/>
tempus poſſet æquale fieri, dum nimirum velocitas ſie
<
lb
/>
decreſceret ad vſque P, vt ab vſque A reciprotè incre
<
lb
/>
uiſſet. </
s
>
<
s
id
="
s.000894
">Quo caſu neque mobile æquabiliter moue
<
lb
/>
retur; neque peruenienti in G ſupereſſet ampliùs vlla
<
lb
/>
velocitas: neque proinde, ſi velocitate hac decreſcente
<
lb
/>
intelligamus acquiri velocitatem ſecundum triangu
<
lb
/>
lum DFP, acquiſita erit in G velocitas alia, quàm FP
<
lb
/>
ipſius DE æqualis, non dupla. </
s
>
<
s
id
="
s.000895
">Igitur mobile percur
<
lb
/>
rens EG velocitate ſola DE percurreret ipſum tem
<
lb
/>
pore breuiore, quàm percurriſſet AE. </
s
>
<
s
id
="
s.000896
">Quanto igitur?
<
lb
/>
</
s
>
<
s
id
="
s.000897
">Omninò dimidio. </
s
>
<
s
id
="
s.000898
">Siquidem cùm velocitas DE non
<
lb
/>
foret deminuta, ſed mobili perueniente ad G, reperi
<
lb
/>
retur adhùc integra, vt puta effecta PG, ideò vim
<
lb
/>
ſuam exprimeret ſecundum totum quadrangulum
<
lb
/>
DG, hoc eſt ſecundum duos triangulos triangulo
<
lb
/>
ADE ſigillatim æqualeis; ſicque velocitas bis illud poſ
<
lb
/>
ſet ſecundum quadrangulum DG, quod poſſet ſemel
<
lb
/>
<
expan
abbr
="
ſecundũ
">ſecundum</
expan
>
<
expan
abbr
="
triangulũ
">triangulum</
expan
>
ADE: atque adeò mobile perueni
<
lb
/>
ret duplò citius (quod eſt dimidium temporis) ex E in
<
lb
/>
G velocitate DE manente eadem, quam ex A in E,
<
lb
/>
velocitate eadem DE increſcente à nihilo ſui. </
s
>
<
s
id
="
s.000899
">Atque
<
lb
/>
ex hoc eſt, quare adnotem, gradum, qui acquiritur, &
<
lb
/>
gradum, qui manet, eſſe inæqualeis; ac manentem di
<
lb
/>
ci poſſe duplò maiorem, quatenùs eſt duplò poten
<
lb
/>
tior, ſeu duplo fortiùs ampliúſque agens. </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>