Gassendi, Pierre, De proportione qua gravia decidentia accelerantur, 1646

List of thumbnails

< >
141
141
142
142
143
143
144
144
145
145
146
146
147
147
148
148
149
149
150
150
< >
page |< < of 360 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000892">
                <pb pagenum="103" xlink:href="028/01/143.jpg"/>
              tempore mobile ſit peruenturum ad G? </s>
              <s id="s.000893">An dices
                <lb/>
              ſolùm quanto tempore peruenerit ex A in E? Atqui,
                <lb/>
              vt faceret, oporteret velocitatem non totam permane­
                <lb/>
              re, ſed ſenſim deminur, vt ſi deminutio fieret ſecun­
                <lb/>
              dum triangulum DPE: quippe hoc ſolùm modo
                <lb/>
              tempus poſſet æquale fieri, dum nimirum velocitas ſie
                <lb/>
              decreſceret ad vſque P, vt ab vſque A reciprotè incre­
                <lb/>
              uiſſet. </s>
              <s id="s.000894">Quo caſu neque mobile æquabiliter moue­
                <lb/>
              retur; neque peruenienti in G ſupereſſet ampliùs vlla
                <lb/>
              velocitas: neque proinde, ſi velocitate hac decreſcente
                <lb/>
              intelligamus acquiri velocitatem ſecundum triangu­
                <lb/>
              lum DFP, acquiſita erit in G velocitas alia, quàm FP
                <lb/>
              ipſius DE æqualis, non dupla. </s>
              <s id="s.000895">Igitur mobile percur­
                <lb/>
              rens EG velocitate ſola DE percurreret ipſum tem­
                <lb/>
              pore breuiore, quàm percurriſſet AE. </s>
              <s id="s.000896">Quanto igitur?
                <lb/>
              </s>
              <s id="s.000897">Omninò dimidio. </s>
              <s id="s.000898">Siquidem cùm velocitas DE non
                <lb/>
              foret deminuta, ſed mobili perueniente ad G, reperi­
                <lb/>
              retur adhùc integra, vt puta effecta PG, ideò vim
                <lb/>
              ſuam exprimeret ſecundum totum quadrangulum
                <lb/>
              DG, hoc eſt ſecundum duos triangulos triangulo
                <lb/>
              ADE ſigillatim æqualeis; ſicque velocitas bis illud poſ­
                <lb/>
              ſet ſecundum quadrangulum DG, quod poſſet ſemel
                <lb/>
                <expan abbr="ſecundũ">ſecundum</expan>
                <expan abbr="triangulũ">triangulum</expan>
              ADE: atque adeò mobile perueni­
                <lb/>
              ret duplò citius (quod eſt dimidium temporis) ex E in
                <lb/>
              G velocitate DE manente eadem, quam ex A in E,
                <lb/>
              velocitate eadem DE increſcente à nihilo ſui. </s>
              <s id="s.000899">Atque
                <lb/>
              ex hoc eſt, quare adnotem, gradum, qui acquiritur, &
                <lb/>
              gradum, qui manet, eſſe inæqualeis; ac manentem di­
                <lb/>
              ci poſſe duplò maiorem, quatenùs eſt duplò poten­
                <lb/>
              tior, ſeu duplo fortiùs ampliúſque agens. </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>