Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
141
142
143
144
145
146
147
148
149
150
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000906
">
<
pb
pagenum
="
105
"
xlink:href
="
028/01/145.jpg
"/>
& parallelas DE, FG eſſe gradus velocitatis. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000907
">Vides ergo quantum repugnet poſitio huiuſmodi;
<
lb
/>
ac peruidere ſimul potes, quantum interſit diſeriminis
<
lb
/>
inter hypotheſin vtramque. </
s
>
<
s
id
="
s.000908
">Nam in ea quidem,
<
lb
/>
quam ſequor, cùm partes lineæ AC, fiant partes
<
lb
/>
temporis, linea DE optimè repræſentat velocitatem
<
lb
/>
aquiſitam in nfie primi, & ſimul triangulum ADE op
<
lb
/>
timè repræſentat vnum ſpatium, dum ea acquiritur,
<
lb
/>
tranſactum: FG verò optimè repræſentat velocita
<
lb
/>
tem acquiſitam in fine ſecundi; & ſimul trapezion
<
lb
/>
DFGE optimè repræſentat tribus triangulis tria ſpa
<
lb
/>
tia peracta, quorum vnum debeatur gradui FP, prout
<
lb
/>
interim acquiſito, & alij duo gradui PG, prout per
<
lb
/>
ſeueranti ab vſque puncto E. </
s
>
<
s
id
="
s.000909
">At in ea, quam tu fe
<
lb
/>
queris, neque habes, quò referas tempus, cuius etiam
<
lb
/>
tua definitio non meminit: neque cùm plures ſpatij
<
lb
/>
partes æquali tempore percurrantur, illarum diſtin
<
lb
/>
ctionem habes, vt ad eas referas gradus inæqualeis ve
<
lb
/>
locitatis. </
s
>
<
s
id
="
s.000910
">Addo autem, quædam præclarè ex mea
<
lb
/>
hypotheſi intelligi, quibus nihil ſimile ex tua. </
s
>
<
s
id
="
s.000911
">Veluti
<
lb
/>
Primò, Quemadmodum omnes velocitatis gradus
<
lb
/>
ſemel acquiſiti inuariati maneant, & ſingulis tempo
<
lb
/>
ribus æquipolleant conſtanter duobus gradibus, hoc
<
lb
/>
eſt duobus ſpatijs æqualibus primo percurrendis ſuf
<
lb
/>
ficiant; vt deſignatur continua ſerie quadrangulo
<
lb
/>
rum æqualium, DG, PI, QL, itemque FQ,
<
lb
/>
RM, &c. </
s
>
<
s
id
="
s.000912
">Deinde, Quemadmodum primo tempore
<
lb
/>
vnicum ſpatium percurratur, quatenus vnicus eſt gra
<
lb
/>
dus, qui acquiritur, & nullus interim, qui permaneat:
<
lb
/>
In ſecundo autem ſint tria, quorum vnum quidem per </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>