Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
141
142
143
144
145
146
147
148
149
150
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/146.jpg
"
pagenum
="
118
"/>
<
arrow.to.target
n
="
note94
"/>
puncta
<
emph
type
="
italics
"/>
b, c
<
emph.end
type
="
italics
"/>
perpetuo tangunt; deque puncto
<
emph
type
="
italics
"/>
V
<
emph.end
type
="
italics
"/>
ad lineam
<
emph
type
="
italics
"/>
AC
<
emph.end
type
="
italics
"/>
eri
<
lb
/>
gatur perpendiculum
<
emph
type
="
italics
"/>
Vad
<
emph.end
type
="
italics
"/>
abſcindens areas curvilineas
<
emph
type
="
italics
"/>
VDba,
<
lb
/>
VDcd,
<
emph.end
type
="
italics
"/>
& erigantur etiam ordinatæ
<
emph
type
="
italics
"/>
Ez, Ex:
<
emph.end
type
="
italics
"/>
quoniam rectan
<
lb
/>
gulum
<
emph
type
="
italics
"/>
DbXIN
<
emph.end
type
="
italics
"/>
ſeu
<
emph
type
="
italics
"/>
DbzE
<
emph.end
type
="
italics
"/>
æquale eſt dimidio rectanguli
<
lb
/>
AX
<
emph
type
="
italics
"/>
KN,
<
emph.end
type
="
italics
"/>
ſeu triangulo
<
emph
type
="
italics
"/>
ICK
<
emph.end
type
="
italics
"/>
; & rectangulum
<
emph
type
="
italics
"/>
DcXIN
<
emph.end
type
="
italics
"/>
ſeu
<
lb
/>
<
emph
type
="
italics
"/>
DcxE
<
emph.end
type
="
italics
"/>
æquale eſt dimidio rectanguli
<
emph
type
="
italics
"/>
YXXXC,
<
emph.end
type
="
italics
"/>
ſeu triangulo
<
lb
/>
<
emph
type
="
italics
"/>
XCY;
<
emph.end
type
="
italics
"/>
hoc eſt, quoniam arearum
<
emph
type
="
italics
"/>
VDba, VIC
<
emph.end
type
="
italics
"/>
æquales ſemper
<
lb
/>
ſunt naſcentes particulæ
<
emph
type
="
italics
"/>
DbzE, ICK,
<
emph.end
type
="
italics
"/>
& arearum
<
emph
type
="
italics
"/>
VDcd,
<
lb
/>
VCX
<
emph.end
type
="
italics
"/>
æquales ſemper ſunt naſcentes particulæ
<
emph
type
="
italics
"/>
DcxE, XCY,
<
emph.end
type
="
italics
"/>
<
lb
/>
erit area genita
<
emph
type
="
italics
"/>
VDba
<
emph.end
type
="
italics
"/>
æqualis areæ genitæ
<
emph
type
="
italics
"/>
VIC,
<
emph.end
type
="
italics
"/>
adeoque tem
<
lb
/>
pori proportionalis, & area genita
<
emph
type
="
italics
"/>
VDcd
<
emph.end
type
="
italics
"/>
æqualis Sectori ge
<
lb
/>
nito
<
emph
type
="
italics
"/>
VCX.
<
emph.end
type
="
italics
"/>
Dato igitur tempore quovis ex quo corpus diſceſ
<
lb
/>
ſit de loco
<
emph
type
="
italics
"/>
V,
<
emph.end
type
="
italics
"/>
dabitur area ipſi proportionalis
<
emph
type
="
italics
"/>
VDba,
<
emph.end
type
="
italics
"/>
& inde
<
lb
/>
dabitur corporis altitudo
<
emph
type
="
italics
"/>
CD
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
CI
<
emph.end
type
="
italics
"/>
; & area
<
emph
type
="
italics
"/>
VDcd,
<
emph.end
type
="
italics
"/>
eique
<
lb
/>
æqualis Sector
<
emph
type
="
italics
"/>
VCX
<
emph.end
type
="
italics
"/>
una cum ejus angulo
<
emph
type
="
italics
"/>
VCI.
<
emph.end
type
="
italics
"/>
Datis autem
<
lb
/>
angulo
<
emph
type
="
italics
"/>
VCI
<
emph.end
type
="
italics
"/>
& altitudine
<
emph
type
="
italics
"/>
CI
<
emph.end
type
="
italics
"/>
datur locus
<
emph
type
="
italics
"/>
I,
<
emph.end
type
="
italics
"/>
in quo corpus com
<
lb
/>
pleto illo tempore reperietur.
<
emph
type
="
italics
"/>
Q.E.I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note94
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Hinc maximæ minimæque corporum altitudines, id eſt
<
lb
/>
Apſides Trajectoriarum expedite inveniri poſſunt. </
s
>
<
s
>Sunt enim
<
lb
/>
Apſides puncta illa in quibus recta
<
emph
type
="
italics
"/>
IC
<
emph.end
type
="
italics
"/>
per centrum ducta incidit
<
lb
/>
perpendiculariter in Trajectoriam
<
emph
type
="
italics
"/>
VIK:
<
emph.end
type
="
italics
"/>
id quod ſit ubi rectæ
<
emph
type
="
italics
"/>
IK
<
emph.end
type
="
italics
"/>
<
lb
/>
&
<
emph
type
="
italics
"/>
NK
<
emph.end
type
="
italics
"/>
æquantur, adeoque ubi area
<
emph
type
="
italics
"/>
ABFD
<
emph.end
type
="
italics
"/>
æqualis eſt ZZ. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
2. Sed & angulus
<
emph
type
="
italics
"/>
KIN,
<
emph.end
type
="
italics
"/>
in quo Trajectoria alibi ſecat
<
lb
/>
lineam illam
<
emph
type
="
italics
"/>
IC,
<
emph.end
type
="
italics
"/>
ex data corporis altitudine
<
emph
type
="
italics
"/>
IC
<
emph.end
type
="
italics
"/>
expedite inveNI
<
lb
/>
tur; nimirum capiendo ſinum ejus ad radium ut
<
emph
type
="
italics
"/>
KN
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
IK,
<
emph.end
type
="
italics
"/>
id
<
lb
/>
eſt, ut Z ad latus quadratum areæ
<
emph
type
="
italics
"/>
ABFD.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
3. Si centro
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
& vertice principali
<
emph
type
="
italics
"/>
V
<
emph.end
type
="
italics
"/>
deſcribatur Sectio quæ
<
lb
/>
libet Conica
<
emph
type
="
italics
"/>
VRS,
<
emph.end
type
="
italics
"/>
& a quovis ejus puncto
<
emph
type
="
italics
"/>
R
<
emph.end
type
="
italics
"/>
agatur Tangens
<
emph
type
="
italics
"/>
RT
<
emph.end
type
="
italics
"/>
<
lb
/>
occurrens axi infinite producto
<
emph
type
="
italics
"/>
CV
<
emph.end
type
="
italics
"/>
in puncto
<
emph
type
="
italics
"/>
T;
<
emph.end
type
="
italics
"/>
dein juncta
<
emph
type
="
italics
"/>
CR
<
emph.end
type
="
italics
"/>
<
lb
/>
ducatur recta
<
emph
type
="
italics
"/>
CP,
<
emph.end
type
="
italics
"/>
quæ æqualis ſit abſciſſæ
<
emph
type
="
italics
"/>
CT,
<
emph.end
type
="
italics
"/>
angulumque
<
emph
type
="
italics
"/>
VCP
<
emph.end
type
="
italics
"/>
<
lb
/>
Sectori
<
emph
type
="
italics
"/>
VCR
<
emph.end
type
="
italics
"/>
proportionalem conſtituat; tendat autem ad centrum
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
<
lb
/>
Vis centripeta Cubo diſtantiæ loeorum a centro reciproce propor
<
lb
/>
tionalis, & exeat corpus de loco
<
emph
type
="
italics
"/>
V
<
emph.end
type
="
italics
"/>
juſta cum Velocitate ſecundum
<
lb
/>
lineam rectæ
<
emph
type
="
italics
"/>
CV
<
emph.end
type
="
italics
"/>
perpendicularem: progredietur corpus illud in
<
lb
/>
Trajectoria quam punctum
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
perpetuo tangit; adeoque ſi Conica
<
lb
/>
ſectio
<
emph
type
="
italics
"/>
CVRS
<
emph.end
type
="
italics
"/>
Hyperbola ſit, deſcendet idem ad centrum: Sin
<
lb
/>
ea Ellipſis ſit, aſcendet illud perpetuo & abibit in infinitum. </
s
>
<
s
>Et con
<
lb
/>
tra, ſi corpus quacunque cum Velocitate exeat de loco
<
emph
type
="
italics
"/>
V,
<
emph.end
type
="
italics
"/>
& perin
<
lb
/>
de ut incæperit vel obliQ.E.D.ſcendere ad centrum, vel ab eo ob-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>