Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
141
142
143
144
145
146
147
148
149
150
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000912
">
<
pb
pagenum
="
106
"
xlink:href
="
028/01/146.jpg
"/>
recens acquiſitum percurratur, & alij duo per primum
<
lb
/>
perſeuerantem: In tertio quinque, quorum vnum per
<
lb
/>
tunc acquiſitum, & ex alijs quatuor, duo per primum,
<
lb
/>
duo per ſecundum perſeueranteis: In quarto ſeptem,
<
lb
/>
quorum vnum itidem per tunc acquiſitum, & ex alijs,
<
lb
/>
duo per primum, duo per ſecundum, duo per tertium
<
lb
/>
perſeueranteis, atque ita de cæteris. </
s
>
<
s
id
="
s.000913
">Ad hæc, Quem
<
lb
/>
admodum proinde æqualibus temporibus æqualia
<
lb
/>
fiant additamenta, ſeu æquales gradus velocitatis ac
<
lb
/>
quirantur, & interim tamen decurſus ſpatiorum ſecun
<
lb
/>
dum ſeriem numerorum ab vnitate incœptorum
<
lb
/>
fiat. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000914
">
<
emph
type
="
italics
"/>
Adde quòd ad vniformen motus accelerationem minimè
<
lb
/>
neceſſarium eſt, vt acquiſita æqualibus temporibus velocitatis
<
lb
/>
incrementa æqualia ſint (vt paßim ſupponere videris) ſed
<
lb
/>
ſatis eſt, ſi continuò maiora in quacumque ratione
<
emph.end
type
="
italics
"/>
G
<
emph
type
="
italics
"/>
eome
<
lb
/>
trica acquirantur: cùm notum ſit omnibus progreßiones
<
lb
/>
Geometricas non minùs vniformeis eſſe, quàm Arithmeticas.
<
lb
/>
</
s
>
<
s
id
="
s.000915
">Ex quibus planè efficitur, definitionem accelerati motus
<
lb
/>
quamcúmque inde veram, perfectamque non probari, quòd
<
lb
/>
ea ratione concepta ſit, qua vniformis acceleratio exprima
<
lb
/>
tur.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000916
">Id, quod dicis videri me ſupponere, reuerâ ſuppo
<
lb
/>
no: & quod ais
<
emph
type
="
italics
"/>
notum omnibus progreßiones Geometricas
<
lb
/>
non minùs eſſe vniformeis, quàm Arithmeticas,
<
emph.end
type
="
italics
"/>
mihi ſal
<
lb
/>
tem notum non eſt (
<
emph
type
="
italics
"/>
qualemcumque me habiturus ſis
<
emph.end
type
="
italics
"/>
) vt
<
lb
/>
neque capio id, quod ais,
<
emph
type
="
italics
"/>
ad vniformem motus acceleratio
<
lb
/>
nem ſatis eſſe, ſi incrementa velocitatis continuò maiora in
<
lb
/>
quacumque ratione Geometrica acquirantur.
<
emph.end
type
="
italics
"/>
</
s
>
<
s
id
="
s.000917
"> Sed nempe
<
lb
/>
videris tu mihi
<
emph
type
="
italics
"/>
vniformitatem
<
emph.end
type
="
italics
"/>
cum
<
emph
type
="
italics
"/>
conformitate
<
emph.end
type
="
italics
"/>
confun-</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>