Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
141
142
143
144
145
146
147
148
149
150
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/148.jpg
"
pagenum
="
120
"/>
<
arrow.to.target
n
="
note96
"/>
primum urgetur in
<
emph
type
="
italics
"/>
I,
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
DR
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
DF.
<
emph.end
type
="
italics
"/>
Pergat autem corpus verſus
<
lb
/>
<
emph
type
="
italics
"/>
k;
<
emph.end
type
="
italics
"/>
centroque
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
& intervallo
<
emph
type
="
italics
"/>
Ck
<
emph.end
type
="
italics
"/>
deſcribatur circulus
<
emph
type
="
italics
"/>
ke
<
emph.end
type
="
italics
"/>
occurrens
<
lb
/>
rectæ
<
emph
type
="
italics
"/>
PD
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
e,
<
emph.end
type
="
italics
"/>
& erigantur curvarum
<
emph
type
="
italics
"/>
ALMm, BFGg, abzv, dcxw
<
emph.end
type
="
italics
"/>
<
lb
/>
<
figure
id
="
id.039.01.148.1.jpg
"
xlink:href
="
039/01/148/1.jpg
"
number
="
92
"/>
<
lb
/>
ordinatim applicatæ
<
emph
type
="
italics
"/>
em, eg, ev, ew.
<
emph.end
type
="
italics
"/>
Ex dato rectangulo
<
emph
type
="
italics
"/>
PDRQ,
<
emph.end
type
="
italics
"/>
<
lb
/>
dataque lege vis centripetæ qua corpus primum agitatur, dantur cur
<
lb
/>
væ lineæ
<
emph
type
="
italics
"/>
BFGg, ALMm,
<
emph.end
type
="
italics
"/>
per conſtructionem Problematis XXVII,
<
lb
/>
& ejus Corol. </
s
>
<
s
>1. Deinde ex dato angulo
<
emph
type
="
italics
"/>
CIT
<
emph.end
type
="
italics
"/>
datur proportio naſcen
<
lb
/>
tium
<
emph
type
="
italics
"/>
IK, KN,
<
emph.end
type
="
italics
"/>
& inde, per conſtructionem Prob. </
s
>
<
s
>XXVIII, datur
<
lb
/>
quantitas Q, una cum curvis lineis
<
emph
type
="
italics
"/>
abzv, dcxw:
<
emph.end
type
="
italics
"/>
adeoque com
<
lb
/>
pleto tempore quovis
<
emph
type
="
italics
"/>
Dbve,
<
emph.end
type
="
italics
"/>
datur tum corporis altitudo
<
emph
type
="
italics
"/>
Ce
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
Ck,
<
emph.end
type
="
italics
"/>
<
lb
/>
tum area
<
emph
type
="
italics
"/>
Dcwe,
<
emph.end
type
="
italics
"/>
eique æqualis Sector
<
emph
type
="
italics
"/>
XCy,
<
emph.end
type
="
italics
"/>
anguluſque
<
emph
type
="
italics
"/>
ICk
<
emph.end
type
="
italics
"/>
&
<
lb
/>
locus
<
emph
type
="
italics
"/>
k
<
emph.end
type
="
italics
"/>
in quo corpus tunc verſabitur.
<
emph
type
="
italics
"/>
Q.E.I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note96
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Supponimus autem in his Propoſitionibus Vim centripetam in
<
lb
/>
receſſu quidem a centro variari ſecundum legem quamcunque quam
<
lb
/>
quis imaginari poteſt, in æqualibus autem a centro diſtantiis eſſe
<
lb
/>
undeque eandem. </
s
>
<
s
>Atque hactenus Motum corporum in Orbibus
<
lb
/>
immobilibus conſideravimus. </
s
>
<
s
>Supereſt ut de Motu eorum in Orbi
<
lb
/>
bus qui circa centrum virium revolvuntur adjiciamus pauca. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>