Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
141
142
143
144
145
146
147
148
149
150
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000928
">
<
pb
pagenum
="
109
"
xlink:href
="
028/01/149.jpg
"/>
<
emph
type
="
italics
"/>
lineis metienda edicis? </
s
>
<
s
id
="
s.000929
">Constat autem lineas
<
emph.end
type
="
italics
"/>
CL, ND,
<
lb
/>
EQ,
<
emph
type
="
italics
"/>
&c. </
s
>
<
s
id
="
s.000930
">vniformi augmento accreſcere, & eſſe, vt
<
emph.end
type
="
italics
"/>
AC
<
emph
type
="
italics
"/>
ad
<
emph.end
type
="
italics
"/>
<
lb
/>
CL,
<
emph
type
="
italics
"/>
ita
<
emph.end
type
="
italics
"/>
AD
<
emph
type
="
italics
"/>
ad
<
emph.end
type
="
italics
"/>
DN,
<
emph
type
="
italics
"/>
&
<
emph.end
type
="
italics
"/>
AE
<
emph
type
="
italics
"/>
ad
<
emph.end
type
="
italics
"/>
EQ,
<
emph
type
="
italics
"/>
&c. </
s
>
<
s
id
="
s.000931
">Non
<
lb
/>
rectè igitur cenſes augmentum velocitatis vniforme eſſe non
<
lb
/>
poſſe, ſi spatijs æqualibus creſcat æqualiter, & tota illa noui
<
lb
/>
istius trianguli difformis ſtructura sponte corruit.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000932
">Heic idem dicendum, quod & paulò antè, quate
<
lb
/>
nus parteis lineæ AB contendis habendas pro parti
<
lb
/>
bus ſpatij, quæ comparentur cum parallelis habitis
<
lb
/>
pro gradibus velocitatis, nulla habita temporis ratio
<
lb
/>
ne. </
s
>
<
s
id
="
s.000933
">Quod autem quæris,
<
emph
type
="
italics
"/>
Cur hoc loco celeritatis aug
<
lb
/>
menta triangulis in ſuperiore autem figura lineis metienda
<
lb
/>
edixerim?
<
emph.end
type
="
italics
"/>
Cauſſam ex eo potes intelligere, quòd cùm
<
lb
/>
tu duos gradus NM, & MD, v. c. æqualeis facias,
<
lb
/>
quaſi acquiſitos ex L, & C, ſecundum duos triangulos
<
lb
/>
LNM, & CMD (tametſi inæquales ſint, & MD ex
<
lb
/>
LC manente factus, duobus æquiualeat) ideò quem
<
lb
/>
defectum exprimere non licuit lineâ ND, exprimere
<
lb
/>
placuerit trapezio LD. Nimirùm, cùm velocitas
<
lb
/>
ND creetur partim ex LC, promota in MD ſecun
<
lb
/>
dum quadrangulum, partim ex additamentis ipſi fa
<
lb
/>
ctis ſecundum triangulum LNM; tu ex velocitate hac
<
lb
/>
detrahis integrum triangulum LMC: ſicque ex tri
<
lb
/>
bus ſuperſunt tantum partes velocitatis duæ, quas vt
<
lb
/>
ſimul iunct is repræſentarem, triangulum à te factum
<
lb
/>
<
expan
abbr
="
vacuũ
">vacuum</
expan
>
ſupplcui, tranſlato LNM in MCL: cópoſitoque
<
lb
/>
inde quadrangulo, locum ipſum trianguli tranſlati re
<
lb
/>
liqui inanem. </
s
>
<
s
id
="
s.000934
">Fandem autem ob cauſſam relicti ſunt
<
lb
/>
duo trianguli manes ad ordinem tertium tres ad quar
<
lb
/>
tum, &c. </
s
>
<
s
id
="
s.000935
">Exindeque eſt, cur
<
emph
type
="
italics
"/>
difformis
<
emph.end
type
="
italics
"/>
quidem, ſed </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>