Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
151
152
153
154
155
156
157
158
159
160
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000943
">
<
pb
pagenum
="
111
"
xlink:href
="
028/01/151.jpg
"/>
citates inter ſe, vt emenſa ſpatia: at quoties velocitates
<
lb
/>
inter ſe ſunt, vt emenſa ſpatia, debent neceſſariò ea
<
lb
/>
ſpatia aut eodem, aut æquali tempore percurri. </
s
>
<
s
id
="
s.000944
">Si igi
<
lb
/>
tur velocitas acquiſita per totam AC, eam rationem
<
lb
/>
habeat ad velocitatem acquiſitam per AB,
<
lb
/>
<
figure
id
="
id.028.01.151.1.jpg
"
xlink:href
="
028/01/151/1.jpg
"
number
="
29
"/>
<
lb
/>
quam ſpatium AC, ad ſpatium AB, neceſſe eſt,
<
lb
/>
vt totum ſpatium AC eodem, aut æquali tem
<
lb
/>
pore decurratur, quo ſpatium AB abſoluitur.
<
lb
/>
</
s
>
<
s
id
="
s.000945
">Impoſſibile eſt autem, vt corpus deſcendens per
<
lb
/>
AC, eodem, aut æquali tempore percurrat to
<
lb
/>
tam AC, quo percurrit partem eius AB, niſi mo
<
lb
/>
tus fiat in inſtanti. </
s
>
<
s
id
="
s.000946
">Tam impoſſibile eſt igitur,
<
lb
/>
vt velocitates in deſcenſu grauium inter ſe ſint, vt
<
lb
/>
emenſa ſpatia, quàm impoſſibile eſt motum illum fie
<
lb
/>
ri in inſtanti.
<
emph
type
="
italics
"/>
Hanc ego rationem Paralogiſmum dico, tu
<
lb
/>
contendis eſſe veram Demonſtrationem. </
s
>
<
s
id
="
s.000947
">Vitium ego tan
<
lb
/>
quam intelligenti breuiùs fortè indicaui: at præoccupato cer
<
lb
/>
tè aliunde animo, non ſufficienter illud detexi. </
s
>
<
s
id
="
s.000948
">Exactiùs igi
<
lb
/>
tur (vt poſtulas) ſingulas huius Ratiocinationis propoſitiones
<
lb
/>
hoc loco perpendemus. </
s
>
<
s
id
="
s.000949
">Prima hęc eſt,
<
emph.end
type
="
italics
"/>
Si acceleratio motus
<
lb
/>
in deſcenſu grauium æqualibus ſpatiis æqualia ſumeret
<
lb
/>
velocitatis incrementa, eſſent velocitates inter ſe, vt
<
lb
/>
emenſa ſpatia.
<
emph
type
="
italics
"/>
Nunc age, quis huius propoſitionis ſenſus
<
lb
/>
eſſe videtur? </
s
>
<
s
id
="
s.000950
">Duplicem enim patitur, & quidem valdè di
<
lb
/>
uerſum, quorum alter verus, alter falſus ſit; & niſi poſteriore
<
lb
/>
hoc ſenſu illam poſt
<
emph.end
type
="
italics
"/>
G
<
emph
type
="
italics
"/>
alileum vſurpes, concludis omninò ni
<
lb
/>
hil. </
s
>
<
s
id
="
s.000951
">Prior ſenſus iſte eſt, Si acceleratio motus in deſcenſu
<
lb
/>
grauium æqualibus spatiis æqualia ſumat velocitatis augmen
<
lb
/>
ta; neceſſe eſt, vt hæc eadem augmenta quibuſlibet spatij
<
lb
/>
partibus acquiſita eandem inter ſerationem obſeruent, quàm
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>