Gassendi, Pierre, De proportione qua gravia decidentia accelerantur, 1646

List of thumbnails

< >
151
151
152
152
153
153
154
154
155
155
156
156
157
157
158
158
159
159
160
160
< >
page |< < of 360 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.000943">
                <pb pagenum="111" xlink:href="028/01/151.jpg"/>
              citates inter ſe, vt emenſa ſpatia: at quoties velocitates
                <lb/>
              inter ſe ſunt, vt emenſa ſpatia, debent neceſſariò ea
                <lb/>
              ſpatia aut eodem, aut æquali tempore percurri. </s>
              <s id="s.000944">Si igi­
                <lb/>
              tur velocitas acquiſita per totam AC, eam rationem
                <lb/>
              habeat ad velocitatem acquiſitam per AB,
                <lb/>
                <figure id="id.028.01.151.1.jpg" xlink:href="028/01/151/1.jpg" number="29"/>
                <lb/>
              quam ſpatium AC, ad ſpatium AB, neceſſe eſt,
                <lb/>
              vt totum ſpatium AC eodem, aut æquali tem­
                <lb/>
              pore decurratur, quo ſpatium AB abſoluitur.
                <lb/>
              </s>
              <s id="s.000945">Impoſſibile eſt autem, vt corpus deſcendens per
                <lb/>
              AC, eodem, aut æquali tempore percurrat to­
                <lb/>
              tam AC, quo percurrit partem eius AB, niſi mo­
                <lb/>
              tus fiat in inſtanti. </s>
              <s id="s.000946">Tam impoſſibile eſt igitur,
                <lb/>
              vt velocitates in deſcenſu grauium inter ſe ſint, vt
                <lb/>
              emenſa ſpatia, quàm impoſſibile eſt motum illum fie­
                <lb/>
              ri in inſtanti.
                <emph type="italics"/>
              Hanc ego rationem Paralogiſmum dico, tu
                <lb/>
              contendis eſſe veram Demonſtrationem. </s>
              <s id="s.000947">Vitium ego tan­
                <lb/>
              quam intelligenti breuiùs fortè indicaui: at præoccupato cer­
                <lb/>
              tè aliunde animo, non ſufficienter illud detexi. </s>
              <s id="s.000948">Exactiùs igi­
                <lb/>
              tur (vt poſtulas) ſingulas huius Ratiocinationis propoſitiones
                <lb/>
              hoc loco perpendemus. </s>
              <s id="s.000949">Prima hęc eſt,
                <emph.end type="italics"/>
              Si acceleratio motus
                <lb/>
              in deſcenſu grauium æqualibus ſpatiis æqualia ſumeret
                <lb/>
              velocitatis incrementa, eſſent velocitates inter ſe, vt
                <lb/>
              emenſa ſpatia.
                <emph type="italics"/>
              Nunc age, quis huius propoſitionis ſenſus
                <lb/>
              eſſe videtur? </s>
              <s id="s.000950">Duplicem enim patitur, & quidem valdè di­
                <lb/>
              uerſum, quorum alter verus, alter falſus ſit; & niſi poſteriore
                <lb/>
              hoc ſenſu illam poſt
                <emph.end type="italics"/>
              G
                <emph type="italics"/>
              alileum vſurpes, concludis omninò ni­
                <lb/>
              hil. </s>
              <s id="s.000951">Prior ſenſus iſte eſt, Si acceleratio motus in deſcenſu
                <lb/>
              grauium æqualibus spatiis æqualia ſumat velocitatis augmen­
                <lb/>
              ta; neceſſe eſt, vt hæc eadem augmenta quibuſlibet spatij
                <lb/>
              partibus acquiſita eandem inter ſerationem obſeruent, quàm
                <emph.end type="italics"/>
              </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>