Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
151
152
153
154
155
156
157
158
159
160
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.000963
">
<
pb
pagenum
="
114
"
xlink:href
="
028/01/154.jpg
"/>
duo iam in C velocitatis gradus habeantur.
<
emph
type
="
italics
"/>
Istad
<
lb
/>
certè eſt antecedens, & nihil aliud aiunt ij, qui à
<
emph.end
type
="
italics
"/>
G
<
emph
type
="
italics
"/>
alileo ab
<
lb
/>
ſurditatis arguuntur. </
s
>
<
s
id
="
s.000964
">Iam ergo vide, vtrum ex hoc antece
<
lb
/>
dente, rectè tuum illud, & Galilei Conſequens inferatur:
<
emph.end
type
="
italics
"/>
Ergo
<
lb
/>
velocitas deſcenſus per totam AC ab initio ad finem,
<
lb
/>
& ſecundum quaſlibet eius parteis conſiderata, perpe
<
lb
/>
tuò dupla eſt eius velocitatis, qua idem graue per AB
<
lb
/>
deſcendit.
<
emph
type
="
italics
"/>
Siue enim
<
emph.end
type
="
italics
"/>
AB
<
emph
type
="
italics
"/>
coniunctam toti
<
emph.end
type
="
italics
"/>
AC,
<
emph
type
="
italics
"/>
conſide
<
lb
/>
res, ſiue vt ſeparatam, qualis eſt
<
emph.end
type
="
italics
"/>
DE,
<
emph
type
="
italics
"/>
ſemper velocitas deſ
<
lb
/>
cenſus per
<
emph.end
type
="
italics
"/>
AC,
<
emph
type
="
italics
"/>
quandiù percurritur prior eius pars
<
emph.end
type
="
italics
"/>
AB,
<
emph
type
="
italics
"/>
nec
<
lb
/>
ſui-ipſius, nec velocitatis per
<
emph.end
type
="
italics
"/>
DE,
<
emph
type
="
italics
"/>
dupla eſt, vt falsò aſſumis,
<
lb
/>
ſed planè eadem, aut æqualis omninò est. </
s
>
<
s
id
="
s.000965
">Nempe volumus,
<
lb
/>
& neceſſariò exigimus (quod ipſa quoque rei natura poſtu
<
lb
/>
lat) vt motus, qui per totam
<
emph.end
type
="
italics
"/>
AC,
<
emph
type
="
italics
"/>
& per partem
<
emph.end
type
="
italics
"/>
AB,
<
emph
type
="
italics
"/>
ſiue
<
lb
/>
per æqualem
<
emph.end
type
="
italics
"/>
DE,
<
emph
type
="
italics
"/>
eadem planè velocitate incipiat, & eadem
<
lb
/>
velocitate progrediatur per totam
<
emph.end
type
="
italics
"/>
AB,
<
emph
type
="
italics
"/>
& per ipſam
<
emph.end
type
="
italics
"/>
DE:
<
lb
/>
<
emph
type
="
italics
"/>
ex
<
emph.end
type
="
italics
"/>
B
<
emph
type
="
italics
"/>
verò ita velocitas augeatur, vt tandem in
<
emph.end
type
="
italics
"/>
C
<
emph
type
="
italics
"/>
dupla in
<
lb
/>
ueniatur eius, qua fuit in
<
emph.end
type
="
italics
"/>
B,
<
emph
type
="
italics
"/>
vel in
<
emph.end
type
="
italics
"/>
E. H
<
emph
type
="
italics
"/>
æc enim nostra,
<
lb
/>
& communis aliorum ſuppoſitio eſt, & primæ propoſitionis à
<
emph.end
type
="
italics
"/>
<
lb
/>
G
<
emph
type
="
italics
"/>
alileo aſſumptæ antecedens; ſi tamen aduerſum nos, & non
<
lb
/>
potiùs aduerſus Chimeras, & Tragalaphos depugnet. </
s
>
<
s
id
="
s.000966
">At
<
lb
/>
ex eo antecedente tuumillud, &
<
emph.end
type
="
italics
"/>
G
<
emph
type
="
italics
"/>
alilei conſequens neceſſa
<
lb
/>
ria illatione non priùs inferetur, quàm aliud quodlibet ex
<
lb
/>
vero falſum eruatur. </
s
>
<
s
id
="
s.000967
">Prima igitur
<
emph.end
type
="
italics
"/>
G
<
emph
type
="
italics
"/>
alilei Propoſitio, eo
<
lb
/>
ſenſu, quo ab ipſo vſurpatur, & à te intelligitur, falſa eſt,
<
lb
/>
atque impoßibilis; ideóque tota eius ratiocinatio, non demon
<
lb
/>
ſtratio, ſed merus Paralogiſmus eſt.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.000968
">An videri potes operosè quidem, ſed nequicquam
<
lb
/>
tamen explicare conatum, vt Paralogiſmum oſtendas,
<
lb
/>
quem quanta moderatione potueram non fuiſſe à te </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>