Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
151
152
153
154
155
156
157
158
159
160
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/156.jpg
"
pagenum
="
128
"/>
<
arrow.to.target
n
="
note104
"/>
ut 1 ad √
<
emph
type
="
italics
"/>
n.
<
emph.end
type
="
italics
"/>
Quare cum angulus
<
emph
type
="
italics
"/>
VCP,
<
emph.end
type
="
italics
"/>
in deſcenſu corporis
<
lb
/>
ab Apſide ſumma ad Apſidem imam in Ellipſi confectus, ſit
<
lb
/>
graduum 180; conficietur angulus
<
emph
type
="
italics
"/>
VCp,
<
emph.end
type
="
italics
"/>
in deſcenſu corporis
<
lb
/>
ab Apſide ſumma ad Apſidem imam, in Orbe propemodum Cir
<
lb
/>
culari quem corpus quodvis vi centripeta dignitati A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-3
<
emph.end
type
="
sup
"/>
pro
<
lb
/>
portionali deſcribit, æqualis angulo graduum (180/√
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
); & hoc angulo
<
lb
/>
repetito corpus redibit ab Apſide ima ad Apſidem ſummam, &
<
lb
/>
ſic deinceps in infinitum. </
s
>
<
s
>Ut ſi vis centripeta ſit ut diſtantia cor
<
lb
/>
poris a centro, id eſt, ut A ſeu (A
<
emph
type
="
sup
"/>
4
<
emph.end
type
="
sup
"/>
/A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
), erit
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
æqualis 4 & √
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
æqualis 2;
<
lb
/>
adeoque angulus inter Apſidem ſummam & Apſidem imam æ
<
lb
/>
qualis (180/2)
<
emph
type
="
italics
"/>
gr.
<
emph.end
type
="
italics
"/>
ſeu 90
<
emph
type
="
italics
"/>
gr.
<
emph.end
type
="
italics
"/>
Completa igitur quarta parte revolutio
<
lb
/>
nis unius corpus perveniet ad Apſidem imam, & completa alia
<
lb
/>
quarta parte ad Apſidem ſummam, & ſic deinceps per vices in
<
lb
/>
infinitum. </
s
>
<
s
>Id quod etiam ex Propoſitione x. </
s
>
<
s
>manifeſtum eſt. </
s
>
<
s
>Nam
<
lb
/>
corpus urgente hac vi centripeta revolvetur in Ellipſi immobili,
<
lb
/>
cujus centrum eſt in centro virium. </
s
>
<
s
>Quod ſi vis centripeta ſit reci
<
lb
/>
proce ut diſtantia, id eſt directe ut 1/A ſeu (A
<
emph
type
="
sup
"/>
2
<
emph.end
type
="
sup
"/>
/A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
), erit
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
æqualis 2, ad
<
lb
/>
eoQ.E.I.ter Apſidem ſummam & imam angulus erit graduum (180/√2)
<
lb
/>
ſeu 127
<
emph
type
="
italics
"/>
gr.
<
emph.end
type
="
italics
"/>
16
<
emph
type
="
italics
"/>
m.
<
emph.end
type
="
italics
"/>
45
<
emph
type
="
italics
"/>
ſec.
<
emph.end
type
="
italics
"/>
& propterea corpus tali vi revolvens, perpe
<
lb
/>
tua anguli hujus repetitione, vicibus alternis ab Apſide ſumma ad
<
lb
/>
imam & ab ima ad ſummam perveniet in æternum. </
s
>
<
s
>Porro ſi vis
<
lb
/>
centripeta ſit reciproce ut latus quadrato-quadratum undecimæ
<
lb
/>
dignitatis altitudinis, id eſt reciproce ut A (11/4), adeoQ.E.D.recte ut
<
lb
/>
(1/A
<
emph
type
="
sup
"/>
11/4
<
emph.end
type
="
sup
"/>
) ſeu ut (A
<
emph
type
="
sup
"/>
1/4
<
emph.end
type
="
sup
"/>
/A
<
emph
type
="
sup
"/>
3
<
emph.end
type
="
sup
"/>
) erit
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
æqualis 1/4, & (180/√
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
)
<
emph
type
="
italics
"/>
gr.
<
emph.end
type
="
italics
"/>
æqualis 360
<
emph
type
="
italics
"/>
gr.
<
emph.end
type
="
italics
"/>
& prop
<
lb
/>
terea corpus de Apſide ſumma diſcedens & ſubinde perpetuo de
<
lb
/>
ſcendens, perveniet ad Apſidem imam ubi complevit revolutionem
<
lb
/>
integram, dein perpetuo aſcenſu complendo aliam revolutionem in
<
lb
/>
regram, redibit ad Apſidem ſummam: & ſic per vices in æternum. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note104
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Exempl.
<
emph.end
type
="
italics
"/>
3. Aſſumentes
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
pro quibuſvis indicibus dignitatum
<
lb
/>
Altitudinis, &
<
emph
type
="
italics
"/>
b, c
<
emph.end
type
="
italics
"/>
pro numeris quibuſvis datis, ponamus vim cen
<
lb
/>
tripetam eſſe ut (
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
+
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
/A
<
emph
type
="
italics
"/>
cub.
<
emph.end
type
="
italics
"/>
), id eſt, ut (
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
in —T-X
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
+
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
in —T-X
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
/A
<
emph
type
="
italics
"/>
cub.
<
emph.end
type
="
italics
"/>
)
<
lb
/>
ſeu (per eandem Methodum noſtram Serierum convergentium) ut
<
lb
/>
(
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
+
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
-
<
emph
type
="
italics
"/>
mb
<
emph.end
type
="
italics
"/>
XT
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
-
<
emph
type
="
italics
"/>
nc
<
emph.end
type
="
italics
"/>
XT
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
+(
<
emph
type
="
italics
"/>
mm-mb
<
emph.end
type
="
italics
"/>
/2)XXT
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
-2
<
emph.end
type
="
sup
"/>
+(
<
emph
type
="
italics
"/>
nn-nc
<
emph.end
type
="
italics
"/>
/2)XXT
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-2
<
emph.end
type
="
sup
"/>
<
emph
type
="
italics
"/>
&c.
<
emph.end
type
="
italics
"/>
/A
<
emph
type
="
italics
"/>
cub.
<
emph.end
type
="
italics
"/>
) </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>