Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
151
152
153
154
155
156
157
158
159
160
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/157.jpg
"
pagenum
="
129
"/>
& collatis numeratorum terminis, fiet RGG-RFF+TFF
<
lb
/>
<
arrow.to.target
n
="
note105
"/>
ad
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
+
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
, ut -FF ad -
<
emph
type
="
italics
"/>
mb
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
-
<
emph
type
="
italics
"/>
nc
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
<
lb
/>
+(
<
emph
type
="
italics
"/>
mm-m
<
emph.end
type
="
italics
"/>
/2)
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
XT
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
-2
<
emph.end
type
="
sup
"/>
+(
<
emph
type
="
italics
"/>
nn-n
<
emph.end
type
="
italics
"/>
/2)
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
XT
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-2
<
emph.end
type
="
sup
"/>
&c. </
s
>
<
s
>Et ſumendo rationes ulti
<
lb
/>
mas quæ prodeunt ubi Orbes ad formam circularem accedunt, fit
<
lb
/>
GG ad
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
+
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
, ut FF ad
<
emph
type
="
italics
"/>
mb
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
+
<
emph
type
="
italics
"/>
nc
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
, &
<
lb
/>
viciſſim GG ad FF ut
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
+
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
ad
<
emph
type
="
italics
"/>
mb
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
+
<
emph
type
="
italics
"/>
nc
<
emph.end
type
="
italics
"/>
T
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
-1
<
emph.end
type
="
sup
"/>
. </
s
>
<
s
>
<
lb
/>
Quæ proportio, exponendo altitudinem maximam
<
emph
type
="
italics
"/>
CV
<
emph.end
type
="
italics
"/>
ſeu T Arith
<
lb
/>
metice per Unitatem, fit GG ad FF ut
<
emph
type
="
italics
"/>
b+c
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
mb+nc,
<
emph.end
type
="
italics
"/>
adeoque ut
<
lb
/>
1 ad (
<
emph
type
="
italics
"/>
mb+nc/b+c
<
emph.end
type
="
italics
"/>
). Unde eſt G ad F, id eſt angulus
<
emph
type
="
italics
"/>
VCp
<
emph.end
type
="
italics
"/>
ad angulum
<
lb
/>
<
emph
type
="
italics
"/>
VCP,
<
emph.end
type
="
italics
"/>
ut 1 ad √(
<
emph
type
="
italics
"/>
mb+nc/b+c
<
emph.end
type
="
italics
"/>
). Et propterea cum angulus
<
emph
type
="
italics
"/>
VCP
<
emph.end
type
="
italics
"/>
inter
<
lb
/>
Apſidem ſummam & Apſidem imam in Ellipſi immobili ſit 180
<
emph
type
="
italics
"/>
gr.
<
emph.end
type
="
italics
"/>
<
lb
/>
erit angulus
<
emph
type
="
italics
"/>
VCp
<
emph.end
type
="
italics
"/>
inter eaſdem Apſides, in Orbe quem corpus vi
<
lb
/>
centripeta quantitati (
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
+
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
/A
<
emph
type
="
italics
"/>
cub.
<
emph.end
type
="
italics
"/>
) proportionali deſcribit, æqua
<
lb
/>
lis angulo graduum 180 √(
<
emph
type
="
italics
"/>
b+c/mb+nc
<
emph.end
type
="
italics
"/>
). Et eodem argumento ſi vis cen
<
lb
/>
tripeta ſit ut (
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
-
<
emph
type
="
italics
"/>
c
<
emph.end
type
="
italics
"/>
A
<
emph
type
="
sup
"/>
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
sup
"/>
/A
<
emph
type
="
italics
"/>
cub.
<
emph.end
type
="
italics
"/>
), angulus inter Apſides invenietur graduum
<
lb
/>
180 √(
<
emph
type
="
italics
"/>
b-c/mb-nc
<
emph.end
type
="
italics
"/>
). Nec ſecus reſolvetur Problema in caſibus diffi
<
lb
/>
cilioribus. </
s
>
<
s
>Quantitas cui vis centripeta proportionalis eſt, re
<
lb
/>
ſolvi ſemper debet in Series convergentes denominatorem ha
<
lb
/>
bentes A
<
emph
type
="
italics
"/>
cub.
<
emph.end
type
="
italics
"/>
Dein pars data numeratoris qui ex illa operatione
<
lb
/>
provenit ad ipſius partem alteram non datam, & pars data nu
<
lb
/>
meratoris hujus RGG-RFF+TFF-FFX ad ipſius partem
<
lb
/>
alteram non datam in eadem ratione ponendæ ſunt: Et quantitates
<
lb
/>
ſuperfluas delendo, ſcribendoque Unitatem pro T, obtinebitur
<
lb
/>
proportio G ad F. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note105
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Hinc ſi vis centripeta ſit ut aliqua altitudinis digNI
<
lb
/>
tas, inveniri poteſt dignitas illa ex motu Apſidum; & contra. </
s
>
<
s
>
<
lb
/>
Nimirum ſi motus totus angularis, quo corpus redit ad Apſidem
<
lb
/>
eandem, ſit ad motum angularem revolutionis unius, ſeu graduum
<
lb
/>
360, ut numerus aliquis
<
emph
type
="
italics
"/>
m
<
emph.end
type
="
italics
"/>
ad numerum alium
<
emph
type
="
italics
"/>
n,
<
emph.end
type
="
italics
"/>
& altitudo no
<
lb
/>
minetur A: erit vis ut altitudinis dignitas illa A
<
emph
type
="
sup
"/>
(
<
emph
type
="
italics
"/>
nn/mm
<
emph.end
type
="
italics
"/>
)-3
<
emph.end
type
="
sup
"/>
, cujus In-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>