Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
161
162
163
164
165
166
167
168
169
170
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/162.jpg
"
pagenum
="
134
"/>
<
arrow.to.target
n
="
note110
"/>
æqualibus, vel deſcribent Ellipſes in plano illo circa centrum
<
emph
type
="
italics
"/>
C,
<
emph.end
type
="
italics
"/>
<
lb
/>
vel periodos movendi ultro citroQ.E.I. lineis rectis per centrum
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
<
lb
/>
in plano illo ductis, complebunt.
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note110
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Scholium.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>His affines ſunt aſcenſus ac deſcenſus corporum in ſuperficiebus
<
lb
/>
curvis. </
s
>
<
s
>Concipe lineas curvas in plano deſcribi, dein circa axes
<
lb
/>
quoſvis datos per centrum Virium tranſeuntes revolvi, & ea revo
<
lb
/>
lutione ſuperficies curvas deſcribere; tum corpora ita moveri ut
<
lb
/>
eorum centra in his ſuperficiebus perpetuo reperiantur. </
s
>
<
s
>Si cor
<
lb
/>
pora illa oblique aſcendendo & deſcendendo currant ultro citroque
<
lb
/>
peragentur eorum motus in planis per axem tranſeuntibus, atque
<
lb
/>
adeo in lineis curvis quarum revolutione curvæ illæ ſuperficies ge
<
lb
/>
nitæ ſunt. </
s
>
<
s
>Iſtis igitur in caſibus ſufficit motum in his lineis cur
<
lb
/>
vis conſiderare. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XLVIII. THEOREMA XVI.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si Rota Globo extrinſecus ad angulos rectos inſiſtat, & more ro
<
lb
/>
tarum revolvendo progrediatur in circulo maximo; longitudo
<
lb
/>
Itineris curvilinei, quod punctum quodvis in Rotæ perimetro da
<
lb
/>
tum, ex quo Globum tetigit, confecit, (quodque Cycloidem vel
<
lb
/>
Epicycloidem nominare licet) erit ad duplicatum ſinum verſum
<
lb
/>
arcus dimidii qui Globum ex eo tempore inter eundum tetigit,
<
lb
/>
ut ſumma diametrorum Globi & Rotæ ad ſemidiametrum Globi.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XLIX. THEOREMA XVII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si Rota Globo concavo ad rectos angulos intrinſecus inſiſtat & re
<
lb
/>
volvendo progrediatur in circulo maximo; longitudo Itineris
<
lb
/>
curvilinei quod punctum quodvis in Rotæ perimetro datum, ex
<
lb
/>
quo Globum tetigit, confecit, erit ad duplicatum ſinum verſum
<
lb
/>
arcus dimidii qui Globum toto hoc tempore inter eundum teti
<
lb
/>
git, ut differentia diametrorum Globi & Rotæ ad ſemidiame
<
lb
/>
trum Globi.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>