Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
161
(141)
162
(142)
163
(143)
164
(144)
165
(145)
166
(146)
167
(147)
168
(148)
169
(149)
170
(150)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(142)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div346
"
type
="
section
"
level
="
1
"
n
="
212
">
<
p
>
<
s
xml:id
="
echoid-s3366
"
xml:space
="
preserve
">
<
pb
o
="
142
"
file
="
0162
"
n
="
162
"
rhead
="
GEOMETRIÆ
"/>
QY, DEF, in recta, YM, ſuperſiciem, LDF, in linea, QM, ſu-
<
lb
/>
perficiem, ODF, in linea, TM, & </
s
>
<
s
xml:id
="
echoid-s3367
"
xml:space
="
preserve
">figuram, CNX, in recta, ZI,
<
lb
/>
ſecet autem, QY, ipſam, BV, in puncto, ℟, & </
s
>
<
s
xml:id
="
echoid-s3368
"
xml:space
="
preserve
">iungatur, A ℟, erit
<
lb
/>
ergo, ZI, ipſi, YK, æquidiſtans, eſt autem etiam, AK, æquidiſtans
<
lb
/>
ipſi, QY, ergo, YI, erit parallelogrammum, & </
s
>
<
s
xml:id
="
echoid-s3369
"
xml:space
="
preserve
">ideò, IK, erit æ.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3370
"
xml:space
="
preserve
">
<
note
position
="
left
"
xlink:label
="
note-0162-01
"
xlink:href
="
note-0162-01a
"
xml:space
="
preserve
">Percõſtru
<
lb
/>
ctionem.</
note
>
qualis ipſi, ZY, & </
s
>
<
s
xml:id
="
echoid-s3371
"
xml:space
="
preserve
">quia, AK, ad, KI, eſt vt, QY, ad, YT, .</
s
>
<
s
xml:id
="
echoid-s3372
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s3373
"
xml:space
="
preserve
">vt,
<
lb
/>
BH, ad, HC, .</
s
>
<
s
xml:id
="
echoid-s3374
"
xml:space
="
preserve
">i vt, ℟ Y, ad, YZ, erit, AK, ad, KI, vt, ℟ Y, ad,
<
lb
/>
YZ, ſunt verò, IK, ZY, æquales, ergo &</
s
>
<
s
xml:id
="
echoid-s3375
"
xml:space
="
preserve
">, AK, ℟ Y, erunt æqua-
<
lb
/>
les, & </
s
>
<
s
xml:id
="
echoid-s3376
"
xml:space
="
preserve
">ſunt parallelæ, quia ambo ſunt parallelæ eidem, LE, ergo
<
lb
/>
eas iungentes, quæ ſunt, ℟ A, YK, erunt æquales, & </
s
>
<
s
xml:id
="
echoid-s3377
"
xml:space
="
preserve
">parallelę, eſt
<
lb
/>
<
figure
xlink:label
="
fig-0162-01
"
xlink:href
="
fig-0162-01a
"
number
="
94
">
<
image
file
="
0162-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0162-01
"/>
</
figure
>
autem, YK, pa-
<
lb
/>
rallela ipſi, Ε Ω,
<
lb
/>
&</
s
>
<
s
xml:id
="
echoid-s3378
"
xml:space
="
preserve
">, Ε Ω, ipſi, VG,
<
lb
/>
ergo, ℟ A, erit pa-
<
lb
/>
rallela ipſi, VG.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3379
"
xml:space
="
preserve
">Similiterautẽ pro-
<
lb
/>
cedemus in reli-
<
lb
/>
quis, quę per pun-
<
lb
/>
cta lineę, CX, ipſi,
<
lb
/>
LE, ducuntur æ-
<
lb
/>
quidiſtantes, do-
<
lb
/>
nec occurrant ſu-
<
lb
/>
perſiciei, LDF,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3380
"
xml:space
="
preserve
">plano, DEF,
<
lb
/>
harum autem patet nihil extra ſuperficiem, LDF, manere, ex iam
<
lb
/>
dictis, ſint ergo omnium earum termini ex vna parte in linea, BAG,
<
lb
/>
ex alia in linea, Η Κ Ω, veluti ergo oſtenſum eſt, A ℟, eſſe paralle-
<
lb
/>
lam ipſi, GV, ſic oſtendemus reliquas, quę iungunt puncta, quibus
<
lb
/>
iam ductæ occurrunt lineæ, BG, cum punctis, in quibus plana per
<
lb
/>
dictas lineas ducta, ipſi, LEF, æquidiſtantia, ſecant ipſam, BV, eſſe
<
lb
/>
ipſi, VG, paralſelas ergo omnes erunt in eodem plano, in eo ſcili-
<
lb
/>
cet quod tranſit per, BV, VG, omnes .</
s
>
<
s
xml:id
="
echoid-s3381
"
xml:space
="
preserve
">n. </
s
>
<
s
xml:id
="
echoid-s3382
"
xml:space
="
preserve
">dictæ parallelæ tranſeunt
<
lb
/>
per puncta rectæ lineæ, BV, ſunt igiturd cta occurſuum puncta, & </
s
>
<
s
xml:id
="
echoid-s3383
"
xml:space
="
preserve
">
<
lb
/>
in ſuperficie, LDF, & </
s
>
<
s
xml:id
="
echoid-s3384
"
xml:space
="
preserve
">in plano, BVG, erunt ergo in eorum com-
<
lb
/>
muni ſectione, linea ergo, BAG, eſt communis ſectio plani per, B
<
lb
/>
V, VG, tranſeuntis, & </
s
>
<
s
xml:id
="
echoid-s3385
"
xml:space
="
preserve
">ſuperficiei, LDF; </
s
>
<
s
xml:id
="
echoid-s3386
"
xml:space
="
preserve
">habemus ergo ſolidum,
<
lb
/>
Β Ω, in cuius ambiente ſuperficie ſunt duæ figuræ planæ inuicem pa-
<
lb
/>
rallelæ, BVG, Η Ε Ω, in quarum circuitu ſumptis vtcunque duo-
<
lb
/>
bus punctis, V, E, & </
s
>
<
s
xml:id
="
echoid-s3387
"
xml:space
="
preserve
">iuncta, VE, cæteræ iungentes quælibet aliæ
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0162-02
"
xlink:href
="
note-0162-02a
"
xml:space
="
preserve
">Def. Cy-
<
lb
/>
lindrici
<
lb
/>
confor-
<
lb
/>
miter.</
note
>
duo puncta earundem circuitus eidem ſemper, VE, parallelę reper-
<
lb
/>
tæ ſunt æquales, ergo, Β Ω erit cylindricus, cu@us oppoſitæ baſes
<
lb
/>
ipſæ, BVG, Η Ε Ω, hoc autem ſecatur plano eildem oppoſit@s </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>