Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
161
162
163
164
165
166
167
168
169
170
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/163.jpg
"
pagenum
="
135
"/>
<
p
type
="
main
">
<
s
>Sit
<
emph
type
="
italics
"/>
ABL
<
emph.end
type
="
italics
"/>
Globus,
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
centrum ejus,
<
emph
type
="
italics
"/>
BPV
<
emph.end
type
="
italics
"/>
Rota ei inſiſtens,
<
emph
type
="
italics
"/>
E
<
emph.end
type
="
italics
"/>
<
lb
/>
<
arrow.to.target
n
="
note111
"/>
centrum Rotæ,
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
punctum contactus, &
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
punctum datum in pe
<
lb
/>
rimetro Rotæ. </
s
>
<
s
>Concipe hanc Rotam pergere in circulo maximo
<
lb
/>
<
emph
type
="
italics
"/>
ABL
<
emph.end
type
="
italics
"/>
ab
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
per
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
verſus
<
emph
type
="
italics
"/>
L,
<
emph.end
type
="
italics
"/>
& inter eundum ita revolvi ut ar
<
lb
/>
cus
<
emph
type
="
italics
"/>
AB, PB
<
emph.end
type
="
italics
"/>
ſibi invicem ſemper æquentur, atque punctum illud
<
lb
/>
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
in perimetro Rotæ datum interea deſcribere Viam curvilineam
<
lb
/>
<
emph
type
="
italics
"/>
AP.
<
emph.end
type
="
italics
"/>
Sit autem
<
emph
type
="
italics
"/>
AP
<
emph.end
type
="
italics
"/>
Via tota curvilinea deſcripta ex quo Rota
<
lb
/>
Globum tetigit in
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
& erit Viæ hujus longitudo
<
emph
type
="
italics
"/>
AP
<
emph.end
type
="
italics
"/>
ad duplum
<
lb
/>
<
figure
id
="
id.039.01.163.1.jpg
"
xlink:href
="
039/01/163/1.jpg
"
number
="
97
"/>
<
lb
/>
ſinum verſum arcus 1/2
<
emph
type
="
italics
"/>
PB,
<
emph.end
type
="
italics
"/>
ut 2
<
emph
type
="
italics
"/>
CE
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
CB.
<
emph.end
type
="
italics
"/>
Nam recta
<
emph
type
="
italics
"/>
CE
<
emph.end
type
="
italics
"/>
(ſi
<
lb
/>
opus eſt producta) occurrat Rotæ in
<
emph
type
="
italics
"/>
V,
<
emph.end
type
="
italics
"/>
junganturque
<
emph
type
="
italics
"/>
CP, BP,
<
lb
/>
EP, VP,
<
emph.end
type
="
italics
"/>
& in
<
emph
type
="
italics
"/>
CP
<
emph.end
type
="
italics
"/>
productam demittatur normalis
<
emph
type
="
italics
"/>
VF.
<
emph.end
type
="
italics
"/>
Tan
<
lb
/>
gant
<
emph
type
="
italics
"/>
PH, VH
<
emph.end
type
="
italics
"/>
Circulum in
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
V
<
emph.end
type
="
italics
"/>
concurrentes in
<
emph
type
="
italics
"/>
H,
<
emph.end
type
="
italics
"/>
ſecetque
<
lb
/>
<
emph
type
="
italics
"/>
PH
<
emph.end
type
="
italics
"/>
ipſam
<
emph
type
="
italics
"/>
VF
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
G,
<
emph.end
type
="
italics
"/>
& ad
<
emph
type
="
italics
"/>
VP
<
emph.end
type
="
italics
"/>
demittantur normales
<
emph
type
="
italics
"/>
GI, HK.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>