Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
161
(141)
162
(142)
163
(143)
164
(144)
165
(145)
166
(146)
167
(147)
168
(148)
169
(149)
170
(150)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(145)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div352
"
type
="
section
"
level
="
1
"
n
="
215
">
<
p
>
<
s
xml:id
="
echoid-s3435
"
xml:space
="
preserve
">
<
pb
o
="
145
"
file
="
0165
"
n
="
165
"
rhead
="
LIBER II.
"/>
ipſi, CX, æquidiſtans ad ſibi homologam in figura, ΠΩ, ipſi, ΩΛ,
<
lb
/>
æquidiſtantem, vel quælibet in quacunque figurarum ipſi, BC, in
<
lb
/>
ſolido, AP, æquidiſtantium, ad ſibi homologam in ſolido, V & </
s
>
<
s
xml:id
="
echoid-s3436
"
xml:space
="
preserve
">
<
lb
/>
lgitur ſimilia ſolida ſunt in tripla ratione linearum, vel laterum ho-
<
lb
/>
mologorum, quæ ſunt in eorundem homologis figuris, quod nobis
<
lb
/>
oſtendendum erat.</
s
>
<
s
xml:id
="
echoid-s3437
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div354
"
type
="
section
"
level
="
1
"
n
="
216
">
<
head
xml:id
="
echoid-head231
"
xml:space
="
preserve
">COROLLARIVM I.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s3438
"
xml:space
="
preserve
">_E_T quia iam dicta ſimilia ſolida oſtenſa ſunt eſſe in tripla ratione li-
<
lb
/>
nearum bomologarum, quæ ſunt in homologis figuris, æquidiſtan-
<
lb
/>
tibus oppoſitis planis tangentibus vtcunque ſumptis, ideò clarum eſt ea-
<
lb
/>
dem ſimilia ſolida eſſe in tripla ratione quarumuis homologarum in ipſis
<
lb
/>
ſolidis deſoriptibilium, & </
s
>
<
s
xml:id
="
echoid-s3439
"
xml:space
="
preserve
">duas quaſuis homologas ſumptas iuxta quæ-
<
lb
/>
dam oppoſita tangentia plana, eſſe vt duas quaſuis homologas ſumptas
<
lb
/>
iuxta alia oppoſita tangentia plana.</
s
>
<
s
xml:id
="
echoid-s3440
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div355
"
type
="
section
"
level
="
1
"
n
="
217
">
<
head
xml:id
="
echoid-head232
"
xml:space
="
preserve
">COROLLARIVM II.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s3441
"
xml:space
="
preserve
">_V_Niuersè inſuper habetur, ſi fuerint quatuor rectæ lineæ deinceps
<
lb
/>
proportionales, vt prima ad quartam, ita eſſe ſolidum deſcriptum
<
lb
/>
à prima ad ſolidum illi ſimile deſ criptum à ſecunda, & </
s
>
<
s
xml:id
="
echoid-s3442
"
xml:space
="
preserve
">huius conuer-
<
lb
/>
ſim; </
s
>
<
s
xml:id
="
echoid-s3443
"
xml:space
="
preserve
">dummodò deſcribentes ſint lineæ, vel latera homologa ſimilium fi-
<
lb
/>
gurarum, quæ in ipſis homologæ vocantur.</
s
>
<
s
xml:id
="
echoid-s3444
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div356
"
type
="
section
"
level
="
1
"
n
="
218
">
<
head
xml:id
="
echoid-head233
"
xml:space
="
preserve
">THE OREMA XVIII. PROPOS. XVIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3445
"
xml:space
="
preserve
">SI quaturor rectę lineę proportionales fuerint, ſolidum de-
<
lb
/>
ſeriptum à prima ad ſolidum ſibi ſimile deſcriptum à ſe-
<
lb
/>
cunda, erit, vt ſolidum deſcriptum à tertia ad ſibi ſimile de-
<
lb
/>
ſcriptum à quarta. </
s
>
<
s
xml:id
="
echoid-s3446
"
xml:space
="
preserve
">Et ſi fuerint quatuor ſolida proportiona-
<
lb
/>
lia, quorum quæ ſunt eiuſdem proportionis termini ſint ſimi-
<
lb
/>
lia, eadem deſcribentia erunt proportionalia; </
s
>
<
s
xml:id
="
echoid-s3447
"
xml:space
="
preserve
">dummodò ta-
<
lb
/>
men ſemper deſcribentia ſint vel lineæ, vel latera homologa
<
lb
/>
figurarum, quæ in ipſis homologæ vocantur.</
s
>
<
s
xml:id
="
echoid-s3448
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3449
"
xml:space
="
preserve
">Sint ergo quatuor rectę lineę proportionales, AB, CD, FG, H
<
lb
/>
M, & </
s
>
<
s
xml:id
="
echoid-s3450
"
xml:space
="
preserve
">ſint ab ipſis, AB, CD, deſcripta ſimilia ſolida, AXB, CV
<
lb
/>
D, & </
s
>
<
s
xml:id
="
echoid-s3451
"
xml:space
="
preserve
">ab, FG, HM, ſimilia ſolida, OFPG, NHQM, ita vt
<
lb
/>
duæ, AB, CD, ſint homologę figurarum, AEBY, DKC ℟, &</
s
>
<
s
xml:id
="
echoid-s3452
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>