Gassendi, Pierre, De proportione qua gravia decidentia accelerantur, 1646

List of thumbnails

< >
161
161
162
162
163
163
164
164
165
165
166
166
167
167
168
168
169
169
170
170
< >
page |< < of 360 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <pb pagenum="126" xlink:href="028/01/166.jpg"/>
            <p type="main">
              <s id="s.001037">Ac tum Concluſio fuiſſet. </s>
            </p>
            <p type="main">
              <s id="s.001038">
                <emph type="italics"/>
              Igitur ſi velocitas quælibet eſſet alterius dupla, neceſſariò
                <lb/>
              ipſæ quóque velocitates perpetuò eſſent inter ſe, vt tempora,
                <lb/>
              eſſetque, exempli gratiâ, velocitas duobus temporibus acquiſi­
                <lb/>
              ta velocitatis primo tempore acquiſitæ dupla.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001039">Agnoſcis autem ecquid nam aduerſum me heinc
                <lb/>
              concludatur. </s>
              <s id="s.001040">Sed de Aſſumptione tamen tua,
                <expan abbr="tanquã">tanquam</expan>
                <lb/>
              habenda eſſet legitima, vt dicam, ea, vt poſſit quadam­
                <lb/>
              tenus cum propoſitione cohærere, neceſſe eſt ita ſup­
                <lb/>
              pleatur. </s>
            </p>
            <p type="main">
              <s id="s.001041">
                <emph type="italics"/>
              Quoties velocitas quælibet
                <emph.end type="italics"/>
              duobus temporibus acqui­
                <lb/>
              ſita
                <emph type="italics"/>
              alterius
                <emph.end type="italics"/>
              primo tempore acquiſitæ
                <emph type="italics"/>
              est dupla; neceſſe
                <lb/>
              eſt, vt eodem, aut æquali tempore
                <emph.end type="italics"/>
              (hoc eſt aggregato duo­
                <lb/>
              rum temporum)
                <emph type="italics"/>
              à velocitate dupla ſpatium decurratur du­
                <lb/>
              plum eius, quod percurritur
                <emph.end type="italics"/>
              (tempore nempe vno, ſeu pri­
                <lb/>
              mo)
                <emph type="italics"/>
              à velocitate ſubdupla.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001042">Tunc autem addo eſſe neceſſe, vt percurratur ſpa­
                <lb/>
              tium non modo duplum, ſed & quadruplum primi: ſi
                <lb/>
              velocitas quidem acquiſita æquabiliter fuerit (qualis
                <lb/>
              illa eſt, qua de agimus) quatenus dum ſecundus veloci­
                <lb/>
              tatis gradus tempore ſecundo acquiritur, & per ipſum
                <lb/>
              par ſpatium illi, quod decurſum fuit tempore primo,
                <lb/>
              percurritur, percurruntur ſimùl duo alia per gradum
                <lb/>
              velocitatis primo tempore acquiſitum, ac in vigore
                <lb/>
              perſeuerantem, veluti iam antè declaratum eſt. </s>
              <s id="s.001043">Sed
                <lb/>
              ecce Subſumis. </s>
            </p>
            <p type="main">
              <s id="s.001044">
                <emph type="italics"/>
              Si igitur primo tempore AD, spatium PM percurra­
                <lb/>
              tur à velocitate ſubdupla primo illo toto tempore acquiſita,
                <lb/>
              eodem tempore ſimul percurretur ſpatium PN ſpatii PM
                <lb/>
              duplum à velocitate dupla toto tempore AE acquiſita.
                <emph.end type="italics"/>
              </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>