Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
161
(141)
162
(142)
163
(143)
164
(144)
165
(145)
166
(146)
167
(147)
168
(148)
169
(149)
170
(150)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(147)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div359
"
type
="
section
"
level
="
1
"
n
="
219
">
<
p
>
<
s
xml:id
="
echoid-s3476
"
xml:space
="
preserve
">
<
pb
o
="
147
"
file
="
0167
"
n
="
167
"
rhead
="
LIBER II.
"/>
BM, angulus, HFE, æqualis eſt angulo illi coalterno, BCM, &</
s
>
<
s
xml:id
="
echoid-s3477
"
xml:space
="
preserve
">,
<
lb
/>
HEF, ipſi, FDC, qui eſt æqualis angulo illi oppoſito, FAC, qui
<
lb
/>
tandem æquatur angulo, MBC; </
s
>
<
s
xml:id
="
echoid-s3478
"
xml:space
="
preserve
">interior exteriori, ideò anguius,
<
lb
/>
FEH, æquatur angulo, MBC, ſunt igitur in triangulis, FEH, M
<
lb
/>
BC, duo anguli duobus angulis æquales, & </
s
>
<
s
xml:id
="
echoid-s3479
"
xml:space
="
preserve
">latera illis adiacentia
<
lb
/>
ſunt æqualia, nempè, FE, ipſi, BC, ergo reliqua latera erunt æ-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0167-01
"
xlink:href
="
note-0167-01a
"
xml:space
="
preserve
">26. Primi
<
lb
/>
Elem.</
note
>
qualia, .</
s
>
<
s
xml:id
="
echoid-s3480
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s3481
"
xml:space
="
preserve
">HE, ipſi, BM, eodem modo oſtendemus de cæteris pa-
<
lb
/>
rallelis ipſi, CD, eas nempè, quæ verſus puncta, F, C, abſcindunt
<
lb
/>
à lateribus, FD, CA, partes æquales, eſſe pariter inter ſe æquales,
<
lb
/>
veiuti ſunt extremæ, AF, CD, æquales, ergo omnes lineæ trian-
<
lb
/>
guli, CAF, æquabuntur omnibus lineis trianguli, FDC, ſumptis
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0167-02
"
xlink:href
="
note-0167-02a
"
xml:space
="
preserve
">3. huius.</
note
>
in vtriſq; </
s
>
<
s
xml:id
="
echoid-s3482
"
xml:space
="
preserve
">omnibus lineis regula, CD, ergo triangulus, ACF, erit
<
lb
/>
æqualis triangulo, FDC, ergo duo trianguli, ACF, FDC, ſcili-
<
lb
/>
cet parallelogrammum, AD, erit duplum cuiuſuis triangulorum, A
<
lb
/>
CF, FCD, quod oſtendere opus erat.</
s
>
<
s
xml:id
="
echoid-s3483
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div361
"
type
="
section
"
level
="
1
"
n
="
220
">
<
head
xml:id
="
echoid-head235
"
xml:space
="
preserve
">COROLLARIVM I.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s3484
"
xml:space
="
preserve
">_H_Inc patet, quæcunq; </
s
>
<
s
xml:id
="
echoid-s3485
"
xml:space
="
preserve
">de parallelogrammis in Prop. </
s
>
<
s
xml:id
="
echoid-s3486
"
xml:space
="
preserve
">5.</
s
>
<
s
xml:id
="
echoid-s3487
"
xml:space
="
preserve
">6.</
s
>
<
s
xml:id
="
echoid-s3488
"
xml:space
="
preserve
">7. </
s
>
<
s
xml:id
="
echoid-s3489
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3490
"
xml:space
="
preserve
">8.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3491
"
xml:space
="
preserve
">huius Librioſtenſaſunt, eadem de triangulis vt verarecipi poſſe,
<
lb
/>
ſi in triangulis conditiones ibi oppoſitæ repertæ fuerint, nam in vnoquo-
<
lb
/>
que expoſitorum triangulorum ſumptis duobus quibuſuis lateribus ſieri
<
lb
/>
poteſt ſub illis in eodem angulo parallelogr ammum, cuius triangulum
<
lb
/>
erit dimidium. </
s
>
<
s
xml:id
="
echoid-s3492
"
xml:space
="
preserve
">Triangula ergo, quæ in eadem ſunt altitudine inter ſe
<
lb
/>
ſunt, vt baſes: </
s
>
<
s
xml:id
="
echoid-s3493
"
xml:space
="
preserve
">Et quæ in eadem baſi mierſe ſunt, vt altitudines, vel vt
<
lb
/>
latera æqualiter baſibus inclinata; </
s
>
<
s
xml:id
="
echoid-s3494
"
xml:space
="
preserve
">Item babent rationem compoſitam ex
<
lb
/>
ratione baſium, & </
s
>
<
s
xml:id
="
echoid-s3495
"
xml:space
="
preserve
">altitudinum, ſine laterum æqualiter baſibus inclina-
<
lb
/>
torum, cum ſunt æquiangulæ: </
s
>
<
s
xml:id
="
echoid-s3496
"
xml:space
="
preserve
">Item triangula, quorum baſes altitudi-
<
lb
/>
nibus, vel lateribus æqualiter baſibus inclinatis, reciprocantur ſunt æ-
<
lb
/>
qualia; </
s
>
<
s
xml:id
="
echoid-s3497
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s3498
"
xml:space
="
preserve
">quæ ſunt æqualia baſes habent altitudinibus, vel lateribus
<
lb
/>
æqualiter baſibus inclmatis, reciprocas: </
s
>
<
s
xml:id
="
echoid-s3499
"
xml:space
="
preserve
">Et tandem habetur ſimilia trian-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0167-03
"
xlink:href
="
note-0167-03a
"
xml:space
="
preserve
">_Iux. diff._
<
lb
/>
_1. Sexti_
<
lb
/>
_Elem._</
note
>
gula eſſe in dupla ratione laterum homologorum, quæ omnia ex præſenti
<
lb
/>
Propoſ. </
s
>
<
s
xml:id
="
echoid-s3500
"
xml:space
="
preserve
">pendent.</
s
>
<
s
xml:id
="
echoid-s3501
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div363
"
type
="
section
"
level
="
1
"
n
="
221
">
<
head
xml:id
="
echoid-head236
"
xml:space
="
preserve
">COROLLARIVM II.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s3502
"
xml:space
="
preserve
">_C_Olligitur in ſuper, ſi ſupponamur, CD, eſſe æqualem ipſi, DF,
<
lb
/>
quamlibet ductam in triangulo, FCD, parallelam ipſi, CD, æqua-
<
lb
/>
lem eſſe ei, quam ipſa abſcindit ab, FD, verſus, F, nempè ipſi abſciſſæ,
<
lb
/>
FE, & </
s
>
<
s
xml:id
="
echoid-s3503
"
xml:space
="
preserve
">producta, EH, verjus, AC, cui incidat in, N, ipſam, HN,
<
lb
/>
æquari reſiduæ abſciſſæ, FE, .</
s
>
<
s
xml:id
="
echoid-s3504
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s3505
"
xml:space
="
preserve
">ipſi, ED, &</
s
>
<
s
xml:id
="
echoid-s3506
"
xml:space
="
preserve
">, NE, integram </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>