Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
161
162
163
164
165
166
167
168
169
170
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/169.jpg
"
pagenum
="
141
"/>
oſcillationis unius, ut arcus
<
emph
type
="
italics
"/>
HI
<
emph.end
type
="
italics
"/>
(tempus quo corpus
<
emph
type
="
italics
"/>
H
<
emph.end
type
="
italics
"/>
perveniet
<
lb
/>
<
arrow.to.target
n
="
note117
"/>
ad
<
emph
type
="
italics
"/>
L
<
emph.end
type
="
italics
"/>
) ad ſemiperipheriam
<
emph
type
="
italics
"/>
HKM
<
emph.end
type
="
italics
"/>
(tempus quo corpus
<
emph
type
="
italics
"/>
H
<
emph.end
type
="
italics
"/>
per
<
lb
/>
veniet ad
<
emph
type
="
italics
"/>
M.
<
emph.end
type
="
italics
"/>
) Et velocitas corporis penduli in loco
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
eſt ad ve
<
lb
/>
locitatem ipſius in loco infimo
<
emph
type
="
italics
"/>
R,
<
emph.end
type
="
italics
"/>
(hoc eſt, velocitas corporis
<
emph
type
="
italics
"/>
H
<
emph.end
type
="
italics
"/>
in
<
lb
/>
loco
<
emph
type
="
italics
"/>
L
<
emph.end
type
="
italics
"/>
ad velocitatem ejus in loco
<
emph
type
="
italics
"/>
G,
<
emph.end
type
="
italics
"/>
ſeu incrementum momenta
<
lb
/>
neum lineæ
<
emph
type
="
italics
"/>
HL
<
emph.end
type
="
italics
"/>
ad incrementum momentaneum lineæ
<
emph
type
="
italics
"/>
HG,
<
emph.end
type
="
italics
"/>
arcu
<
lb
/>
bus
<
emph
type
="
italics
"/>
HI, HK
<
emph.end
type
="
italics
"/>
æquabili fluxu creſcentibus) ut ordinatim applicata
<
lb
/>
<
emph
type
="
italics
"/>
LI
<
emph.end
type
="
italics
"/>
ad radium
<
emph
type
="
italics
"/>
GK,
<
emph.end
type
="
italics
"/>
ſive ut √
<
emph
type
="
italics
"/>
<
expan
abbr
="
SRq.-TRq.
">SRq.-TRque</
expan
>
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SR.
<
emph.end
type
="
italics
"/>
Unde cum,
<
lb
/>
in oſcillationibus inæqualibus, deſcribantur æqualibus temporibus
<
lb
/>
arcus totis oſcillationum arcubus proportionales; habentur, ex da
<
lb
/>
tis temporibus, & velocitates & arcus deſcripti in oſcillationibus
<
lb
/>
univerſis. </
s
>
<
s
>Quæ erant primo invenienda. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note117
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Oſcillentur jam Funipendula
<
lb
/>
<
figure
id
="
id.039.01.169.1.jpg
"
xlink:href
="
039/01/169/1.jpg
"
number
="
100
"/>
<
lb
/>
corpora in Cycloidibus diverſis
<
lb
/>
intra Globos diverſos, quorum
<
lb
/>
diverſæ ſunt etiam Vires abſolu
<
lb
/>
tæ, deſcriptis: &, ſi Vis abſolu
<
lb
/>
ta Globi cujuſvis
<
emph
type
="
italics
"/>
QOS
<
emph.end
type
="
italics
"/>
dicatur V,
<
lb
/>
Vis acceleratrix qua
<
expan
abbr
="
Pendulũ
">Pendulum</
expan
>
urge
<
lb
/>
tur in circumferentia hujus Globi,
<
lb
/>
ubi incipit directe verſus centrum
<
lb
/>
ejus moveri, erit ut diſtantia Cor
<
lb
/>
poris penduli a centro illo & Vis abſoluta Globi conjunctim, hoc
<
lb
/>
eſt, ut
<
emph
type
="
italics
"/>
CO
<
emph.end
type
="
italics
"/>
XV. </
s
>
<
s
>Itaque lineola
<
emph
type
="
italics
"/>
HY,
<
emph.end
type
="
italics
"/>
quæ ſit ut hæc Vis accelera
<
lb
/>
trix
<
emph
type
="
italics
"/>
CO
<
emph.end
type
="
italics
"/>
XV, deſcribetur dato tempore; &, ſi erigatur normalis
<
emph
type
="
italics
"/>
YZ
<
emph.end
type
="
italics
"/>
<
lb
/>
circumferentiæ occurrens in
<
emph
type
="
italics
"/>
Z,
<
emph.end
type
="
italics
"/>
arcus naſcens
<
emph
type
="
italics
"/>
HZ
<
emph.end
type
="
italics
"/>
denotabit datum
<
lb
/>
illud tempus. </
s
>
<
s
>Eſt autem arcus hic naſcens
<
emph
type
="
italics
"/>
HZ
<
emph.end
type
="
italics
"/>
in ſubduplicata ra
<
lb
/>
tione rectanguli
<
emph
type
="
italics
"/>
GHY,
<
emph.end
type
="
italics
"/>
adeoque ut √
<
emph
type
="
italics
"/>
GHXCO
<
emph.end
type
="
italics
"/>
XV. </
s
>
<
s
>Unde Tem
<
lb
/>
pus oſcillationis integræ in Cycloide
<
emph
type
="
italics
"/>
QRS
<
emph.end
type
="
italics
"/>
(cum ſit ut ſemiperi
<
lb
/>
pheria
<
emph
type
="
italics
"/>
HKM,
<
emph.end
type
="
italics
"/>
quæ oſcillationem illam integram denotat, directe,
<
lb
/>
utque arcus
<
emph
type
="
italics
"/>
HZ,
<
emph.end
type
="
italics
"/>
qui datum tempus ſimiliter denotat, inverſe) fiet
<
lb
/>
ut
<
emph
type
="
italics
"/>
GH
<
emph.end
type
="
italics
"/>
directe & √
<
emph
type
="
italics
"/>
GHXCO
<
emph.end
type
="
italics
"/>
XV inverſe, hoc eſt, ob æquales
<
emph
type
="
italics
"/>
GH
<
emph.end
type
="
italics
"/>
<
lb
/>
&
<
emph
type
="
italics
"/>
SR,
<
emph.end
type
="
italics
"/>
ut √(
<
emph
type
="
italics
"/>
SR/CO
<
emph.end
type
="
italics
"/>
XV), ſive (per Corol. </
s
>
<
s
>Prop. </
s
>
<
s
>L) ut √(
<
emph
type
="
italics
"/>
AR/AC
<
emph.end
type
="
italics
"/>
XV).
<
lb
/>
Itaque Oſcillationes in Globis & Cycloidibus omnibus, quibuſ
<
lb
/>
cunque cum Viribus abſolutis factæ, ſunt in ratione quæ compo
<
lb
/>
nitur ex ſubduplicata ratione longitudinis Fili directe, & ſubdu
<
lb
/>
plicata ratione diſtantiæ inter punctum ſuſpenſionis & centrum </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>