Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
171
(151)
172
(152)
173
(153)
174
(154)
175
(155)
176
(156)
177
(157)
178
(158)
179
(159)
180
(160)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(151)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div374
"
type
="
section
"
level
="
1
"
n
="
227
">
<
p
>
<
s
xml:id
="
echoid-s3572
"
xml:space
="
preserve
">
<
pb
o
="
151
"
file
="
0171
"
n
="
171
"
rhead
="
LIBER II.
"/>
drata, Τ β, ad omnia quadrata trianguli, & </
s
>
<
s
xml:id
="
echoid-s3573
"
xml:space
="
preserve
">Ζ β, ita non ſunt om-
<
lb
/>
nia quadrata, AS, ad omnia quadrata trianguli, OES, erunt igi-
<
lb
/>
tur ita omnia quadrata, AS, ad maius, vel ad minus omnibus qua-
<
lb
/>
dratis trianguli, OES, ſint exceſſus, vel defectus, omnia quadrata
<
lb
/>
figuræ planæ, Ω, diuidatur autem latus, OS, bifariam, in, Q, &</
s
>
<
s
xml:id
="
echoid-s3574
"
xml:space
="
preserve
">,
<
lb
/>
OQ, QS, bifariam in, P, R, & </
s
>
<
s
xml:id
="
echoid-s3575
"
xml:space
="
preserve
">ſic deinceps fiat, ita vt ductis per
<
lb
/>
puncta diuiſionum parallelis ipſi, ES, DR, CQ, BP, tandem de-
<
lb
/>
uentum ſit ad parallelogrammum, DS, cuius omnia quadrata, re-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0171-01
"
xlink:href
="
note-0171-01a
"
xml:space
="
preserve
">Iux. prim.
<
lb
/>
10. Elem.</
note
>
gula, ES, ſint minora omnibus quadratis figurę, Ω, per puncta au-
<
lb
/>
tem, in quibus dictæ parallelę ipſam, OE, ſecant, ducantur vſque
<
lb
/>
ad proximas parallelas æquidiſtantes lateribus, AE, OS, ipſę, LN,
<
lb
/>
GK, EM, erit igitur triangulo, OES, circumſcripta figura quæ-
<
lb
/>
<
figure
xlink:label
="
fig-0171-01
"
xlink:href
="
fig-0171-01a
"
number
="
99
">
<
image
file
="
0171-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0171-01
"/>
</
figure
>
dam cõpoſita ex
<
lb
/>
parallelogrãmo,
<
lb
/>
LP, GQ, FR,
<
lb
/>
DS, & </
s
>
<
s
xml:id
="
echoid-s3576
"
xml:space
="
preserve
">alia in-
<
lb
/>
ſcripta compoſi-
<
lb
/>
ta ex parallelo-
<
lb
/>
grammis, 9 Q, I
<
lb
/>
R, HS, ita vt
<
lb
/>
omnia quadrata
<
lb
/>
figuræ circũſcri-
<
lb
/>
ptę, regula, ES,
<
lb
/>
excedant omnia
<
lb
/>
quadrata inſcri-
<
lb
/>
ptæ, regula ea-
<
lb
/>
dẽ, minori quan-
<
lb
/>
titate, quam ſint
<
lb
/>
omnia quadrata figuræ, Ω; </
s
>
<
s
xml:id
="
echoid-s3577
"
xml:space
="
preserve
">nam in parallelogrammo, DS, recta,
<
lb
/>
HM, diuidit omnia quadrata, DS, in omnia quadrata, DM, in
<
lb
/>
omnia quadrata, HS, & </
s
>
<
s
xml:id
="
echoid-s3578
"
xml:space
="
preserve
">in rectangula bis ſub, DM, MR, veluti
<
lb
/>
punctum, H, diuidit quadratum, DR, in quadrat. </
s
>
<
s
xml:id
="
echoid-s3579
"
xml:space
="
preserve
">DH, quad at-
<
lb
/>
HR, & </
s
>
<
s
xml:id
="
echoid-s3580
"
xml:space
="
preserve
">rectangulum bis ſub, DHR, ſiue ex 23. </
s
>
<
s
xml:id
="
echoid-s3581
"
xml:space
="
preserve
">ſeq. </
s
>
<
s
xml:id
="
echoid-s3582
"
xml:space
="
preserve
">ab hac inde-
<
lb
/>
pendente, & </
s
>
<
s
xml:id
="
echoid-s3583
"
xml:space
="
preserve
">ideò omnia quadrat. </
s
>
<
s
xml:id
="
echoid-s3584
"
xml:space
="
preserve
">DS, excedunt omnia quadrata,
<
lb
/>
HS, omnibus quadratis, DM, & </
s
>
<
s
xml:id
="
echoid-s3585
"
xml:space
="
preserve
">rectangulis bis ſub, DM, MR,
<
lb
/>
eodem pacto oſtendemus omnia quadrata, FR, excedere omnia
<
lb
/>
quadrata, IR, omnibus quadratis, FK, & </
s
>
<
s
xml:id
="
echoid-s3586
"
xml:space
="
preserve
">rectangulis bis ſub, FK,
<
lb
/>
KQ, & </
s
>
<
s
xml:id
="
echoid-s3587
"
xml:space
="
preserve
">ſic omnia quadrata, GQ, excedere omnia quadrata, 9 Q,
<
lb
/>
omnibus quadratis, GN, cum rectangulis bis ſub, GN, NP, & </
s
>
<
s
xml:id
="
echoid-s3588
"
xml:space
="
preserve
">in
<
lb
/>
figura circumſcripta ſuperſunt adhuc omnia quadrata, LP, porro ſi
<
lb
/>
hos exceſſus ſimul colligamus fient omnia quadrata, DS, nam ſi
<
lb
/>
omnia quadrata, LP, vel, 9 Q, iunxeris omnibus quadratis, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>