Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
171
172
173
174
175
176
177
178
179
180
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/175.jpg
"
pagenum
="
147
"/>
<
p
type
="
main
">
<
s
>Stantibus quæ in ſuperiore Propoſitione conſtructa ſunt, exeat
<
lb
/>
<
arrow.to.target
n
="
note123
"/>
corpus de loco
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
in Trajectoriam inveniendam
<
emph
type
="
italics
"/>
STtR
<
emph.end
type
="
italics
"/>
; &, ex da
<
lb
/>
ta ejus velocitate in altitudine
<
emph
type
="
italics
"/>
SC,
<
emph.end
type
="
italics
"/>
dabitur ejus velocitas in alia
<
lb
/>
quavis altitudine
<
emph
type
="
italics
"/>
TC.
<
emph.end
type
="
italics
"/>
Ea cum velocitate, dato tempore quam
<
lb
/>
minimo, deſcribat corpus Trajectoriæ ſuæ particulam
<
emph
type
="
italics
"/>
Tt,
<
emph.end
type
="
italics
"/>
ſitque
<
lb
/>
<
emph
type
="
italics
"/>
Pp
<
emph.end
type
="
italics
"/>
veſtigium ejus in plano
<
emph
type
="
italics
"/>
AOP
<
emph.end
type
="
italics
"/>
deſcriptum. </
s
>
<
s
>Jungatur
<
emph
type
="
italics
"/>
Op,
<
emph.end
type
="
italics
"/>
&
<
lb
/>
Circelli centro
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
intervallo
<
emph
type
="
italics
"/>
Tt
<
emph.end
type
="
italics
"/>
in ſuperficie curva deſcripti ſit
<
emph
type
="
italics
"/>
PpQ
<
emph.end
type
="
italics
"/>
<
lb
/>
veſtigium Ellipticum in eodem plano
<
emph
type
="
italics
"/>
OAPp
<
emph.end
type
="
italics
"/>
deſcriptum. </
s
>
<
s
>Et ob
<
lb
/>
datum magnitudine & poſitione Circellum, dabitur Ellipſis illa
<
lb
/>
<
emph
type
="
italics
"/>
<
expan
abbr
="
Ppq.
">Ppque</
expan
>
<
emph.end
type
="
italics
"/>
Cumque area
<
emph
type
="
italics
"/>
POp
<
emph.end
type
="
italics
"/>
ſit tempori proportionalis, atque ad
<
lb
/>
eo ex dato tempore detur, dabitur
<
emph
type
="
italics
"/>
Op
<
emph.end
type
="
italics
"/>
poſitione, & inde dabitur
<
lb
/>
communis ejus & Ellipſeos interſectio
<
emph
type
="
italics
"/>
p,
<
emph.end
type
="
italics
"/>
una cum angulo
<
emph
type
="
italics
"/>
OPp,
<
emph.end
type
="
italics
"/>
<
lb
/>
in quo Trajectoriæ veſtigium
<
emph
type
="
italics
"/>
APp
<
emph.end
type
="
italics
"/>
ſecat lineam
<
emph
type
="
italics
"/>
OP.
<
emph.end
type
="
italics
"/>
Inde au
<
lb
/>
tem invenietur Trajectoriæ veſtigium illud
<
emph
type
="
italics
"/>
APp,
<
emph.end
type
="
italics
"/>
eadem methodo
<
lb
/>
qua curva linea
<
emph
type
="
italics
"/>
VIKk,
<
emph.end
type
="
italics
"/>
in Propoſitione XLI, ex ſimilibus datis
<
lb
/>
inventa fuit. </
s
>
<
s
>Tum ex ſingulis veſtigii punctis
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
erigendo ad pla
<
lb
/>
num
<
emph
type
="
italics
"/>
AOP
<
emph.end
type
="
italics
"/>
perpendicula
<
emph
type
="
italics
"/>
PT
<
emph.end
type
="
italics
"/>
ſuperficiei curvæ occurrentia in
<
emph
type
="
italics
"/>
T,
<
emph.end
type
="
italics
"/>
<
lb
/>
dabuntur ſingula Trajectoriæ puncta
<
emph
type
="
italics
"/>
T. Q.E.I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note123
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
</
subchap2
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
SECTIO XI.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
De Motu Corporum Viribus centripetis ſe mutuo petentium.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Hactenus expoſui Motus corporum attractorum ad centrum Im
<
lb
/>
mobile, quale tamen vix extat in rerum natura. </
s
>
<
s
>Attractiones enim
<
lb
/>
fieri ſolent ad corpora; & corporum trahentium & attractorum
<
lb
/>
actiones ſemper mutuæ ſunt & æquales, per Legem tertiam: ad
<
lb
/>
eo ut neque attrahens poſſit quieſcere neque attractum, ſi duo ſint
<
lb
/>
corpora, ſed ambo (per Legum Corollarium quartum) quaſi at
<
lb
/>
tractione mutua, circum gravitatis centrum commune revolvantur:
<
lb
/>
& ſi plura ſint corpora (quæ vel ab unico attrahantur vel omnia
<
lb
/>
ſe mutuo attrahant) hæc ita inter ſe moveri debeant, ut gravitatis
<
lb
/>
centrum commune vel quieſcat vel uniformiter moveatur in direc
<
lb
/>
tum. </
s
>
<
s
>Qua de cauſa jam pergo Motum exponere corporum ſe mu
<
lb
/>
tuo trahentium, conſiderando Vires centripetas tanquam Attractio
<
lb
/>
nes, quamvis fortaſſe, ſi phyſice loquamur, verius dicantur Im
<
lb
/>
pulſus. </
s
>
<
s
>In Mathematicis enim jam verſamur, & propterea miſſis
<
lb
/>
diſputationibus Phyſicis, familiari utimur ſermone, quo poſſimus
<
lb
/>
a Lectoribus Mathematicis facilius intelligi. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>