Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
171
(151)
172
(152)
173
(153)
174
(154)
175
(155)
176
(156)
177
(157)
178
(158)
179
(159)
180
(160)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(159)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div401
"
type
="
section
"
level
="
1
"
n
="
245
">
<
pb
o
="
159
"
file
="
0179
"
n
="
179
"
rhead
="
LIBER II.
"/>
</
div
>
<
div
xml:id
="
echoid-div402
"
type
="
section
"
level
="
1
"
n
="
246
">
<
head
xml:id
="
echoid-head261
"
xml:space
="
preserve
">THEOREMA XXIV. PROPOS. XXIV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s3757
"
xml:space
="
preserve
">EXpoſito parallelogrammo quocunq; </
s
>
<
s
xml:id
="
echoid-s3758
"
xml:space
="
preserve
">in eoque ducta dia-
<
lb
/>
metro; </
s
>
<
s
xml:id
="
echoid-s3759
"
xml:space
="
preserve
">omnia quadrata parallelogrammiad omnia qua-
<
lb
/>
drata cuiuſuis triangulorum per dictam diametrum conſtitu-
<
lb
/>
torum erunt in ratione tripla, vno laterum parallelogrammi
<
lb
/>
communiregula exiſtente.</
s
>
<
s
xml:id
="
echoid-s3760
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3761
"
xml:space
="
preserve
">Sit parallelogrammum, AG, in eo ducta diameter, CE, regula
<
lb
/>
vtcunque latus, EG. </
s
>
<
s
xml:id
="
echoid-s3762
"
xml:space
="
preserve
">Dico omnia quadrata, AG, eſſe tripla om-
<
lb
/>
nium quadratorum trianguli cuiuſuis, AEC, ſiue, CEG. </
s
>
<
s
xml:id
="
echoid-s3763
"
xml:space
="
preserve
">Diui-
<
lb
/>
dantur bifariam latera, AC, CG, in punctis, B, H, & </
s
>
<
s
xml:id
="
echoid-s3764
"
xml:space
="
preserve
">per, B, ip-
<
lb
/>
ſi, CG, perque, H, ipſi, CA, parallelę ducantur, BF, DH, quę
<
lb
/>
ſe cum recta, CE, communiter bifariam ſecabuntin puncto, M.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3765
"
xml:space
="
preserve
">Quia igitur in figura, ſiue parallelogrammo, AG, ducitur linea, B
<
lb
/>
F, quę omnes æquidiſtantes ipſi, EG, bifariam ſecat, &</
s
>
<
s
xml:id
="
echoid-s3766
"
xml:space
="
preserve
">, CE, quæ
<
lb
/>
<
figure
xlink:label
="
fig-0179-01
"
xlink:href
="
fig-0179-01a
"
number
="
102
">
<
image
file
="
0179-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0179-01
"/>
</
figure
>
eaſdem in partes inæquales diuidit, pręter-
<
lb
/>
quam, DH, omnia quadrata trianguli, A
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0179-01
"
xlink:href
="
note-0179-01a
"
xml:space
="
preserve
">Per I. Co-
<
lb
/>
rol. antec.</
note
>
EC, cum omnibus quadratis trianguli, C
<
lb
/>
EG, & </
s
>
<
s
xml:id
="
echoid-s3767
"
xml:space
="
preserve
">cum omnibus quadratis duorum
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0179-02
"
xlink:href
="
note-0179-02a
"
xml:space
="
preserve
">Vide D.
<
lb
/>
lib. 7. An-
<
lb
/>
not. Pro-
<
lb
/>
pofit. 8.</
note
>
triangulorum, CBM, EMF, dupla erunt
<
lb
/>
omnium quadratorum, AF, licet enim, D
<
lb
/>
H, perlineam, CE, fit non bifariam diui-
<
lb
/>
ſa, nihil tamen hoc obſtat noſtro propoſi-
<
lb
/>
to, nam & </
s
>
<
s
xml:id
="
echoid-s3768
"
xml:space
="
preserve
">ipſi, DH, contingit, veluti ijs,
<
lb
/>
quæ inæqualiter ſecantur, quadratum ſe-
<
lb
/>
ctarum partium, ſcilicet quadrata, DM,
<
lb
/>
MH, dupla eſſe quadratorum dimidiæ, nempè quadrati, DM, & </
s
>
<
s
xml:id
="
echoid-s3769
"
xml:space
="
preserve
">
<
lb
/>
eius, quæ inter ſectiones interijcitur, quæ hic nulla eſt, cum duę ſe-
<
lb
/>
cantes, BF, CE, vniantur in puncto, M: </
s
>
<
s
xml:id
="
echoid-s3770
"
xml:space
="
preserve
">Sunt autem omnia qua-
<
lb
/>
drata trianguli, AEC, æqualia omnibus quadratis trianguli, CE
<
lb
/>
G, quia ſunt triangula in æqualibus baſibus, EG, AC, & </
s
>
<
s
xml:id
="
echoid-s3771
"
xml:space
="
preserve
">eadem al-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0179-03
"
xlink:href
="
note-0179-03a
"
xml:space
="
preserve
">Ex B. vel
<
lb
/>
C. Corol.
<
lb
/>
Prop. 22.
<
lb
/>
huius.</
note
>
titudine licet euersè poſita, & </
s
>
<
s
xml:id
="
echoid-s3772
"
xml:space
="
preserve
">ideò omnia quadrata trianguli, CE
<
lb
/>
G, ſunt æqualia omnibus quadratis, AF, cum omnibus quadratis
<
lb
/>
triangulorum, CBM, MEF. </
s
>
<
s
xml:id
="
echoid-s3773
"
xml:space
="
preserve
">Quoniam verò omnia quadrata tri-
<
lb
/>
anguli, BMC, funt æqualia omnibus quadratis trianguli, CMH,
<
lb
/>
omnia verò quadrata trianguli, CEG, ad omnia quadrata triangu-
<
lb
/>
li, CMH, ſunt in tripla ratione eius, quam habet, GC, ad, CH,
<
lb
/>
quæ eſt dupla .</
s
>
<
s
xml:id
="
echoid-s3774
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s3775
"
xml:space
="
preserve
">in ratione octupla, & </
s
>
<
s
xml:id
="
echoid-s3776
"
xml:space
="
preserve
">hoc, quia triangula, CEG,
<
lb
/>
CMH, ſunt ſimilia, ideò omnia quadrata, CEG, erunt </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>