Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
181
182
183
184
185
186
187
188
189
190
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/182.jpg
"
pagenum
="
154
"/>
<
arrow.to.target
n
="
note130
"/>
viribus prioribus majores; adeoque (per Corol. </
s
>
<
s
>1. Prop. </
s
>
<
s
>X. & Corol. </
s
>
<
s
>
<
lb
/>
1 & 8. Prop, IV) efficiunt ut corpora illa deſcribant Ellipſes ut prius,
<
lb
/>
ſed motu celeriore. </
s
>
<
s
>Vires reliquæ acceleratrices
<
emph
type
="
italics
"/>
SD
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
SD,
<
emph.end
type
="
italics
"/>
actio
<
lb
/>
nibus motricibus
<
emph
type
="
italics
"/>
SDXT
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
SDXL,
<
emph.end
type
="
italics
"/>
quæ ſunt ut corpora, tra
<
lb
/>
hendo corpora illa æqualiter & ſecundum lineas
<
emph
type
="
italics
"/>
TI, LK,
<
emph.end
type
="
italics
"/>
ipſi
<
emph
type
="
italics
"/>
DS
<
emph.end
type
="
italics
"/>
<
lb
/>
parallelas, nil mutant ſitus eorum ad invicem, ſed faciunt ut ipſa
<
lb
/>
æqualiter accedant ad lineam
<
emph
type
="
italics
"/>
IK
<
emph.end
type
="
italics
"/>
; quam ductam concipe per me
<
lb
/>
dium corporis
<
emph
type
="
italics
"/>
S,
<
emph.end
type
="
italics
"/>
& lineæ
<
emph
type
="
italics
"/>
DS
<
emph.end
type
="
italics
"/>
perpendicularem. </
s
>
<
s
>Impedietur au
<
lb
/>
tem iſte ad lineam
<
emph
type
="
italics
"/>
IK
<
emph.end
type
="
italics
"/>
acceſſus faciendo ut Syſtema corporum
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
L
<
emph.end
type
="
italics
"/>
<
lb
/>
ex una parte, & corpus
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
ex altera, juſtis cum velocitatibus, gyren
<
lb
/>
tur circa commune gravitatis centrum
<
emph
type
="
italics
"/>
C.
<
emph.end
type
="
italics
"/>
Tali motu corpus
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
<
lb
/>
(eo quod ſumma virium motricium
<
emph
type
="
italics
"/>
SDXT
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
SDXL,
<
emph.end
type
="
italics
"/>
diſtan
<
lb
/>
tiæ
<
emph
type
="
italics
"/>
CS
<
emph.end
type
="
italics
"/>
proportionalium, tendit verſus centrum
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
) deſcribit El
<
lb
/>
lipſin circa idem
<
emph
type
="
italics
"/>
C;
<
emph.end
type
="
italics
"/>
& punctum
<
emph
type
="
italics
"/>
D,
<
emph.end
type
="
italics
"/>
ob proportionales
<
emph
type
="
italics
"/>
CS, CD,
<
emph.end
type
="
italics
"/>
<
lb
/>
deſcribet Ellipſin conſimilem e regione. </
s
>
<
s
>Corpora autem
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
L
<
emph.end
type
="
italics
"/>
<
lb
/>
viribus motricibus
<
emph
type
="
italics
"/>
SDXT
<
emph.end
type
="
italics
"/>
<
lb
/>
<
figure
id
="
id.039.01.182.1.jpg
"
xlink:href
="
039/01/182/1.jpg
"
number
="
106
"/>
<
lb
/>
&
<
emph
type
="
italics
"/>
SDXL,
<
emph.end
type
="
italics
"/>
(prius priore,
<
lb
/>
poſterius poſteriore) æqua
<
lb
/>
liter & ſecundum lineas pa
<
lb
/>
rallelas
<
emph
type
="
italics
"/>
TI
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
LK
<
emph.end
type
="
italics
"/>
(ut dic
<
lb
/>
tum eſt) attracta, pergent
<
lb
/>
(per Legum Corollarium
<
lb
/>
quintum & ſextum) circa cen
<
lb
/>
trum mobile
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
Ellipſes ſuas
<
lb
/>
deſcribere, ut prius.
<
emph
type
="
italics
"/>
Q.E.I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note130
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Addatur jam corpus quartum
<
emph
type
="
italics
"/>
V,
<
emph.end
type
="
italics
"/>
& ſimili argumento conclude
<
lb
/>
tur hoc & punctum
<
emph
type
="
italics
"/>
C
<
emph.end
type
="
italics
"/>
Ellipſes circa omnium commune centrum
<
lb
/>
gravitatis
<
emph
type
="
italics
"/>
B
<
emph.end
type
="
italics
"/>
deſcribere; manentibus motibus priorum corporum
<
lb
/>
<
emph
type
="
italics
"/>
T, L
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
circa centra
<
emph
type
="
italics
"/>
D
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
C,
<
emph.end
type
="
italics
"/>
ſed paulo acceleratis. </
s
>
<
s
>Et eadem
<
lb
/>
methodo corpora plura adjungere licebit.
<
emph
type
="
italics
"/>
Q.E.I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Hæc ita ſe habent ubi corpora
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
L
<
emph.end
type
="
italics
"/>
trahunt ſe mutuo viribus
<
lb
/>
acceleratricibus majoribus vel minoribus quam quibus trahunt cor
<
lb
/>
pora reliqua pro ratione diſtantiarum. </
s
>
<
s
>Sunto mutuæ omnium at
<
lb
/>
tractiones acceleratrices ad invicem ut diſtantiæ ductæ in corpo
<
lb
/>
ra trahentia, & ex præcedentibus facile deducetur quod corpora
<
lb
/>
omnia æqualibus temporibus periodicis Ellipſes varias, circa om
<
lb
/>
nium commune gravitatis centrum
<
emph
type
="
italics
"/>
B,
<
emph.end
type
="
italics
"/>
in plano immobili deſcri
<
lb
/>
bunt.
<
emph
type
="
italics
"/>
Q.E.I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>