Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
181
(161)
182
(162)
183
(163)
184
(164)
185
(165)
186
(166)
187
(167)
188
(168)
189
(169)
190
(170)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(165)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div409
"
type
="
section
"
level
="
1
"
n
="
249
">
<
p
>
<
s
xml:id
="
echoid-s3929
"
xml:space
="
preserve
">
<
pb
o
="
165
"
file
="
0185
"
n
="
185
"
rhead
="
LIBER II.
"/>
nibus eiuſdem planis, regula, GE, quæ & </
s
>
<
s
xml:id
="
echoid-s3930
"
xml:space
="
preserve
">ipſa ſunt omnia rectan-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0185-01
"
xlink:href
="
note-0185-01a
"
xml:space
="
preserve
">ExCor. 2.
<
lb
/>
huius.</
note
>
gula figuræ, CBE, regula, CE, &</
s
>
<
s
xml:id
="
echoid-s3931
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3932
"
xml:space
="
preserve
">què alta, acipſum, GE, ergo
<
lb
/>
omnia rectangula ipſius, AE, regula, CE, &</
s
>
<
s
xml:id
="
echoid-s3933
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3934
"
xml:space
="
preserve
">què alta, acipſum, G
<
lb
/>
E, ad omnia rectangula figuræ, CBE, regula, CE, &</
s
>
<
s
xml:id
="
echoid-s3935
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3936
"
xml:space
="
preserve
">què alta, ac
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0185-02
"
xlink:href
="
note-0185-02a
"
xml:space
="
preserve
">3. huius.</
note
>
ipſum, GE, erunt vt, AE, ad figuram, BCE, .</
s
>
<
s
xml:id
="
echoid-s3937
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s3938
"
xml:space
="
preserve
">vt omnes lineę,
<
lb
/>
AE, ad omnes lineas, BCE, regula, CE, quod ſerua.</
s
>
<
s
xml:id
="
echoid-s3939
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s3940
"
xml:space
="
preserve
">Conſpiciatur nunc figura Theorematis anteced. </
s
>
<
s
xml:id
="
echoid-s3941
"
xml:space
="
preserve
">in qua diximus,
<
lb
/>
MO, ad, OI, eſſe vt quadratum, QO, ad quadratum, OP. </
s
>
<
s
xml:id
="
echoid-s3942
"
xml:space
="
preserve
">Di-
<
lb
/>
co omnes lineas, AE, ad omnes lineas figurę, BCE, regula, CE,
<
lb
/>
eſſe vt omnia quadrata, BF, ad omnia quadrata figurę, B E F, quia
<
lb
/>
enim, vt, MO, ad, OI, ita (ſumpta quauis communi altitudine,
<
lb
/>
nempè ex. </
s
>
<
s
xml:id
="
echoid-s3943
"
xml:space
="
preserve
">gr. </
s
>
<
s
xml:id
="
echoid-s3944
"
xml:space
="
preserve
">altitudine conſtitutorum parallelepipedorum, quę eſt,
<
lb
/>
SE,) rectangulum ſub, MO, &</
s
>
<
s
xml:id
="
echoid-s3945
"
xml:space
="
preserve
">, SE, ad rectangulum ſub, IO, S
<
lb
/>
E, ideò, vt rectangulum ſub, MO, SE, ad rectangulum ſub, IO,
<
lb
/>
SE, ita erit quadratum, OQ, ad quadratum, OP, ſunt autem hæ
<
lb
/>
magnitudines eiuſdem generis, nempè omnes ſuperficies, ergo om.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s3946
"
xml:space
="
preserve
">nia rectangulaipſius, AE, regula, CE, &</
s
>
<
s
xml:id
="
echoid-s3947
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3948
"
xml:space
="
preserve
">què alta, ac vnum eorum,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0185-03
"
xlink:href
="
note-0185-03a
"
xml:space
="
preserve
">Exantee.</
note
>
nempè, vt rectangulum ſub, CE, ES, ad omnia rectangula figurę,
<
lb
/>
BCE, regula eadem, CE, &</
s
>
<
s
xml:id
="
echoid-s3949
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3950
"
xml:space
="
preserve
">què alta, ac vnum eorum, vt, GE,
<
lb
/>
erunt vt omnia quadrata, BF, ad omnia quadrata figuræ, BEF,
<
lb
/>
omnia verò rectangulaipſius, AE, &</
s
>
<
s
xml:id
="
echoid-s3951
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3952
"
xml:space
="
preserve
">què alta, ac vnum eorum, vt,
<
lb
/>
GE, ad omnia rectangula figuræ, BCE, &</
s
>
<
s
xml:id
="
echoid-s3953
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3954
"
xml:space
="
preserve
">què alta, acipſum, G
<
lb
/>
E, ſunt vt omnes lineæ ipſius, AE, ad omnes lineas figuræ, BCE,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0185-04
"
xlink:href
="
note-0185-04a
"
xml:space
="
preserve
">Ex proxi-
<
lb
/>
mè dictis.</
note
>
regula, CE, ergo omnes lineæ, AE, ad omnes lineas figuræ, BC
<
lb
/>
E, regula, CE, erunt vt omnia quadrata, BF, ad omnia quadrata
<
lb
/>
figuræ, BEF, ſunt ergo proportionales, licet ſint magnitudines di-
<
lb
/>
uerſi generis, nempè lineę, & </
s
>
<
s
xml:id
="
echoid-s3955
"
xml:space
="
preserve
">ſuperficies, quod oſtendere opus erat.</
s
>
<
s
xml:id
="
echoid-s3956
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div412
"
type
="
section
"
level
="
1
"
n
="
250
">
<
head
xml:id
="
echoid-head265
"
xml:space
="
preserve
">COROLLARIVM I.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s3957
"
xml:space
="
preserve
">_H_Inc igitur primò habetur, ſi fuerint parallel ogrammum, & </
s
>
<
s
xml:id
="
echoid-s3958
"
xml:space
="
preserve
">figurá
<
lb
/>
plana in eadem baſi, & </
s
>
<
s
xml:id
="
echoid-s3959
"
xml:space
="
preserve
">altitudine, regula ſumpta baſi, omnia,
<
lb
/>
rectangula parallelogrammi &</
s
>
<
s
xml:id
="
echoid-s3960
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3961
"
xml:space
="
preserve
">què alta ad omnia rectangula illius figu-
<
lb
/>
ræ &</
s
>
<
s
xml:id
="
echoid-s3962
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3963
"
xml:space
="
preserve
">què alta ac prædicta, eſſe vt dictum parallelogrammum ad dictam,
<
lb
/>
figuram, quod patuit, dum oſtenſum eſt omnia rectangulaipſius, AE,
<
lb
/>
altitudinis, SE, ad omnia rectangula figuræ, BCE, altitudinis eiuſdem,
<
lb
/>
SE, eſſe vt, AE, ad figuram, BCE.</
s
>
<
s
xml:id
="
echoid-s3964
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>