Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
181
(161)
182
(162)
183
(163)
184
(164)
185
(165)
186
(166)
187
(167)
188
(168)
189
(169)
190
(170)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(166)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div412
"
type
="
section
"
level
="
1
"
n
="
250
">
<
pb
o
="
166
"
file
="
0186
"
n
="
186
"
rhead
="
GEOMETRIÆ
"/>
</
div
>
<
div
xml:id
="
echoid-div413
"
type
="
section
"
level
="
1
"
n
="
251
">
<
head
xml:id
="
echoid-head266
"
xml:space
="
preserve
">COROLLARIVM II.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s3965
"
xml:space
="
preserve
">_H_Abetur ſecundò cylindricos in eadem altitudine exiſtentes eſſe in-
<
lb
/>
terſe, vt baſes, quod de cæteris, veluti de ſupradictis, FE, GD
<
lb
/>
E, oſiendetur, quamuis aliter etiam id aliundè infra colligetur.</
s
>
<
s
xml:id
="
echoid-s3966
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div414
"
type
="
section
"
level
="
1
"
n
="
252
">
<
head
xml:id
="
echoid-head267
"
xml:space
="
preserve
">COROLLARIVM III.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s3967
"
xml:space
="
preserve
">_H_Abetur tertiò, ſi non ſint in ſupradictis duobus Theorematibus ex-
<
lb
/>
poſita duo parallelogramma, & </
s
>
<
s
xml:id
="
echoid-s3968
"
xml:space
="
preserve
">duæ figuræ, ſed vnum tantum,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s3969
"
xml:space
="
preserve
">vna figurain eadem baſi, & </
s
>
<
s
xml:id
="
echoid-s3970
"
xml:space
="
preserve
">altitudine cumipſo, cuius baſi poſita pro
<
lb
/>
regula, & </
s
>
<
s
xml:id
="
echoid-s3971
"
xml:space
="
preserve
">ſumpto vteunque puncto in vno laterum baſi inſi§tentium,
<
lb
/>
perque ipſum baſi ducta parallela, reperiatur eam, quæ intercipitur pa-
<
lb
/>
rallelogrammo ad eam, quæ intercibitur figura, vel figuras ſimiles ab
<
lb
/>
ipſis deſcriptas, tanquam homologis lineis, vel lateribus, eſſe vt vnam
<
lb
/>
ex maximis abſciſſarum lateris, in quo ſumptum eſt punctum, ad abſciſ-
<
lb
/>
ſam per ductam baſi &</
s
>
<
s
xml:id
="
echoid-s3972
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3973
"
xml:space
="
preserve
">quidiſtantem, vel vt iſtas adiuncta quadam recta,
<
lb
/>
linea, vel vt iſtarum figuras ſimiles ab ipſis tanquam lineis, vel lateri-
<
lb
/>
bus homologis deſcriptas, ita vt figuræ deſcriptæ &</
s
>
<
s
xml:id
="
echoid-s3974
"
xml:space
="
preserve
">a4; </
s
>
<
s
xml:id
="
echoid-s3975
"
xml:space
="
preserve
">ſingulis earum, quæ
<
lb
/>
dicuntur omnes lineæ parallelogrammi, & </
s
>
<
s
xml:id
="
echoid-s3976
"
xml:space
="
preserve
">dictæ figuræ, ſint ſimiles, vt
<
lb
/>
pariter, quæ deſcribuntur &</
s
>
<
s
xml:id
="
echoid-s3977
"
xml:space
="
preserve
">a4; </
s
>
<
s
xml:id
="
echoid-s3978
"
xml:space
="
preserve
">ſingulis earum, quæ dicuntur maximæ ab-
<
lb
/>
ſciſſarum, vel abſciſſæ dicti lateris, quod adbuc dictæ magnitudines col-
<
lb
/>
lectæ erunt proportionales: </
s
>
<
s
xml:id
="
echoid-s3979
"
xml:space
="
preserve
">Vt ex. </
s
>
<
s
xml:id
="
echoid-s3980
"
xml:space
="
preserve
">gr. </
s
>
<
s
xml:id
="
echoid-s3981
"
xml:space
="
preserve
">ſi in Theorematis antecedentis fi-
<
lb
/>
gura habeamus tantum parallelogrammum, BF, & </
s
>
<
s
xml:id
="
echoid-s3982
"
xml:space
="
preserve
">in eiuſdem baſi, E
<
lb
/>
F, & </
s
>
<
s
xml:id
="
echoid-s3983
"
xml:space
="
preserve
">eadem altitudine, figuram, BEF, & </
s
>
<
s
xml:id
="
echoid-s3984
"
xml:space
="
preserve
">ſumpto in vno laterum, B
<
lb
/>
E, DF, vtcunque puncto, O, & </
s
>
<
s
xml:id
="
echoid-s3985
"
xml:space
="
preserve
">per, O, ducta, OQ, parallela ipſi, E
<
lb
/>
F, reperiamus, QO, ad, OP, eſſe vt, EB, ad, BO, vel figuras ſimiles
<
lb
/>
deſcriptas ab, OQ, OP, tanquam lineis, vel lateribus homologis, vt
<
lb
/>
ex. </
s
>
<
s
xml:id
="
echoid-s3986
"
xml:space
="
preserve
">gr. </
s
>
<
s
xml:id
="
echoid-s3987
"
xml:space
="
preserve
">quadratum, QO, ad quadratum, OP, eſſe vt, EB, ad, BO, vel
<
lb
/>
vt, EB, adiuncta quadam linea ad, BO, adiuncta eadem, vel vt abiſtis
<
lb
/>
deſcriptas ſimiles figuras, dico collectas magnitudines, quæ comparan-
<
lb
/>
tur eſſe proportionales: </
s
>
<
s
xml:id
="
echoid-s3988
"
xml:space
="
preserve
">Nam ſi ipſi, BE, intelligatur applicatum pa-
<
lb
/>
rallelogrammum, AE, cuius baſis ſit, CE, in directum ipſi, EF, con-
<
lb
/>
ſtituta, &</
s
>
<
s
xml:id
="
echoid-s3989
"
xml:space
="
preserve
">, CE, &</
s
>
<
s
xml:id
="
echoid-s3990
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3991
"
xml:space
="
preserve
">qualis ipſi, EB, tunc omnes lineæ, AE, regula, C
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0186-01
"
xlink:href
="
note-0186-01a
"
xml:space
="
preserve
">_Corol. 2._
<
lb
/>
_19. huius._</
note
>
E, ſunt &</
s
>
<
s
xml:id
="
echoid-s3992
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3993
"
xml:space
="
preserve
">quales maximis abſciſſarum, BE, vt probatum eſt, & </
s
>
<
s
xml:id
="
echoid-s3994
"
xml:space
="
preserve
">omnes
<
lb
/>
abſciſſæ &</
s
>
<
s
xml:id
="
echoid-s3995
"
xml:space
="
preserve
">ae;</
s
>
<
s
xml:id
="
echoid-s3996
"
xml:space
="
preserve
">quales omnibus lineis trianguli BCE, ſi ſit iuncta, BC, (quæ
<
lb
/>
ſecet, MO, in, X,) vnde vice earum, quæ dicuntur maximæ abſciſſa-
<
lb
/>
rum, vel abſciſſæ ipſius, BE, rectè ſumemus omnes lineas, AE, & </
s
>
<
s
xml:id
="
echoid-s3997
"
xml:space
="
preserve
">tri-
<
lb
/>
anguli, BCE, & </
s
>
<
s
xml:id
="
echoid-s3998
"
xml:space
="
preserve
">itareperiemus quadratum, QO, ad quadratum, OP,
<
lb
/>
ex. </
s
>
<
s
xml:id
="
echoid-s3999
"
xml:space
="
preserve
">gr. </
s
>
<
s
xml:id
="
echoid-s4000
"
xml:space
="
preserve
">eſſe vt, MO, ad, OX, vel vt quadratum, M, O, ad </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>