Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
181
182
183
184
185
186
187
188
189
190
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/187.jpg
"
pagenum
="
159
"/>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note134
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Exponatur corporis
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
attractio acceleratrix verſus
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
per lineam
<
lb
/>
<
arrow.to.target
n
="
note135
"/>
<
emph
type
="
italics
"/>
SN;
<
emph.end
type
="
italics
"/>
& ſi attractiones acceleratrices
<
emph
type
="
italics
"/>
SM, SN
<
emph.end
type
="
italics
"/>
æquales eſſent; hæ,
<
lb
/>
trahendo corpora
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
æqualiter & ſecundum lineas parallelas,
<
lb
/>
nil mutarent ſitum eorum ad invicem. </
s
>
<
s
>Iidem jam forent corporum
<
lb
/>
illorum motus inter ſe (per Legum Corol. </
s
>
<
s
>6.) ac ſi hæ attractio
<
lb
/>
nes tollerentur. </
s
>
<
s
>Et pari ratione ſi attractio
<
emph
type
="
italics
"/>
SN
<
emph.end
type
="
italics
"/>
minor eſſet at
<
lb
/>
tractione
<
emph
type
="
italics
"/>
SM,
<
emph.end
type
="
italics
"/>
tolleret ipſa attractionis
<
emph
type
="
italics
"/>
SM
<
emph.end
type
="
italics
"/>
partem
<
emph
type
="
italics
"/>
SN,
<
emph.end
type
="
italics
"/>
& ma
<
lb
/>
neret pars ſola
<
emph
type
="
italics
"/>
MN,
<
emph.end
type
="
italics
"/>
qua temporum & arearum proportionalitas
<
lb
/>
& Orbitæ forma illa Elliptica perturbaretur. </
s
>
<
s
>Et ſimiliter ſi attra
<
lb
/>
ctio
<
emph
type
="
italics
"/>
SN
<
emph.end
type
="
italics
"/>
major eſſet attractione
<
emph
type
="
italics
"/>
SM,
<
emph.end
type
="
italics
"/>
oriretur ex differentia ſola
<
lb
/>
<
emph
type
="
italics
"/>
MN
<
emph.end
type
="
italics
"/>
perturbatio proportionalitatis & Orbitæ. </
s
>
<
s
>Sic per attractio
<
lb
/>
nem
<
emph
type
="
italics
"/>
SN
<
emph.end
type
="
italics
"/>
reducitur ſemper attractio tertia ſuperior
<
emph
type
="
italics
"/>
SM
<
emph.end
type
="
italics
"/>
ad attra
<
lb
/>
ctionem
<
emph
type
="
italics
"/>
MN,
<
emph.end
type
="
italics
"/>
attractione prima & ſecunda manentibus prorſus im
<
lb
/>
mutatis: & propterea areæ ac tempora ad proportionalitatem, &
<
lb
/>
Orbita
<
emph
type
="
italics
"/>
PAB
<
emph.end
type
="
italics
"/>
ad formam præfatam Ellipticam tum maxime acce
<
lb
/>
dunt, ubi attractio
<
emph
type
="
italics
"/>
MN
<
emph.end
type
="
italics
"/>
vel nulla eſt, vel quam fieri poſſit miNI
<
lb
/>
ma; hoc eſt, ubi corporum
<
emph
type
="
italics
"/>
P & T
<
emph.end
type
="
italics
"/>
attractiones acceleratrices, fa
<
lb
/>
ctæ verſus corpus
<
emph
type
="
italics
"/>
S,
<
emph.end
type
="
italics
"/>
accedunt quantum fieri poteſt ad æqualita
<
lb
/>
tem; id eſt, ubi attractio
<
emph
type
="
italics
"/>
SN
<
emph.end
type
="
italics
"/>
non eſt nulla, neque minor minima
<
lb
/>
attractionum omnium
<
emph
type
="
italics
"/>
SM,
<
emph.end
type
="
italics
"/>
ſed inter attractionum omnium
<
emph
type
="
italics
"/>
SM
<
emph.end
type
="
italics
"/>
<
lb
/>
maximam & minimam quaſi mediocris, hoc eſt, non multo major
<
lb
/>
neque multo minor attractione
<
emph
type
="
italics
"/>
SK. Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note135
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Cas.
<
emph.end
type
="
italics
"/>
2. Revolvantur jam corpora minora
<
emph
type
="
italics
"/>
P, S
<
emph.end
type
="
italics
"/>
circa maximum
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
<
lb
/>
in planis diverſis; & vis
<
emph
type
="
italics
"/>
LM,
<
emph.end
type
="
italics
"/>
agendo ſecundum lineam
<
emph
type
="
italics
"/>
PT
<
emph.end
type
="
italics
"/>
in pla
<
lb
/>
no Orbitæ
<
emph
type
="
italics
"/>
PAB
<
emph.end
type
="
italics
"/>
ſitam, eundem habebit effectum ac prius, neque
<
lb
/>
corpus
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
de plano Orbitæ ſuæ deturbabit. </
s
>
<
s
>At vis altera
<
emph
type
="
italics
"/>
NM,
<
emph.end
type
="
italics
"/>
<
lb
/>
agendo ſecundum lineam quæ ipſi
<
emph
type
="
italics
"/>
ST
<
emph.end
type
="
italics
"/>
parallela eſt, (atque adco,
<
lb
/>
quando corpus
<
emph
type
="
italics
"/>
S
<
emph.end
type
="
italics
"/>
verſatur extra lineam Nodorum, inclinatur ad
<
lb
/>
planum Orbitæ
<
emph
type
="
italics
"/>
PAB
<
emph.end
type
="
italics
"/>
;) præter perturbationem motus in Longitu
<
lb
/>
dinem jam ante expoſitam, inducet perturbationem motus in Lati
<
lb
/>
tudinem, trahendo corpus
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
de plano ſuæ Orbitæ. </
s
>
<
s
>Et hæc per
<
lb
/>
turbatio, in dato quovis corporum
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
ad invicem ſitu, erit ut
<
lb
/>
vis illa generans
<
emph
type
="
italics
"/>
MN,
<
emph.end
type
="
italics
"/>
adeoque minima evadet ubi
<
emph
type
="
italics
"/>
MN
<
emph.end
type
="
italics
"/>
eſt miNI
<
lb
/>
ma, hoc eſt (uti jam expoſui) ubi attractio
<
emph
type
="
italics
"/>
SN
<
emph.end
type
="
italics
"/>
non eſt multo ma
<
lb
/>
jor, neque multo minor attractione
<
emph
type
="
italics
"/>
SK. Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Ex his facile colligitur quod, ſi corpora plura minora
<
lb
/>
<
emph
type
="
italics
"/>
P, S, R,
<
emph.end
type
="
italics
"/>
&c. </
s
>
<
s
>revolvantur circa maximum
<
emph
type
="
italics
"/>
T,
<
emph.end
type
="
italics
"/>
motus corporis inti
<
lb
/>
mi
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
minime perturbabitur attractionibus exteriorum, ubi corpus
<
lb
/>
maximum
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
pariter a cæteris, pro ratione virium acceleratricum,
<
lb
/>
attrahitur & agitatur atque cætera a ſe mutuo. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>