Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
181
182
183
184
185
186
187
188
189
190
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/189.jpg
"
pagenum
="
161
"/>
ris periodici inverſe: patet hanc rationem compoſitam diminui per </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
arrow.to.target
n
="
note137
"/>
actionem vis
<
emph
type
="
italics
"/>
KL,
<
emph.end
type
="
italics
"/>
adeoque tempus periodicum, ſi maneat Orbis
<
lb
/>
radius
<
emph
type
="
italics
"/>
TP,
<
emph.end
type
="
italics
"/>
augeri, idQ.E.I. ſubduplicata ratione qua vis illa cen
<
lb
/>
tripeta diminuitur: auctoque adeo vel diminuto hoc Radio, tem
<
lb
/>
pus periodicum augeri magis, vel diminui minus quam in Radii hu
<
lb
/>
jus ratione ſeſquiplicata, per Corol. </
s
>
<
s
>6. Prop. </
s
>
<
s
>IV. </
s
>
<
s
>Si vis illa corporis
<
lb
/>
centralis paulatim langueſceret, corpus
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
minus ſemper & minus
<
lb
/>
attractum perpetuo recederet longius a centro
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
; & contra, ſi vis
<
lb
/>
illa augeretur, accederet propius. </
s
>
<
s
>Ergo ſi actio corporis longin
<
lb
/>
qui
<
emph
type
="
italics
"/>
S,
<
emph.end
type
="
italics
"/>
qua vis illa diminuitur, augeatur ac diminuatur per vices;
<
lb
/>
augebitur ſimul ac diminuetur Radius
<
emph
type
="
italics
"/>
TP
<
emph.end
type
="
italics
"/>
per vices, & tempus pe
<
lb
/>
riodicum augebitur ac diminuetur in ratione compoſita ex ratione
<
lb
/>
ſeſquiplicata Radii & ratione ſubduplicata qua vis illa centripeta
<
lb
/>
corporis centralis
<
emph
type
="
italics
"/>
T,
<
emph.end
type
="
italics
"/>
per incrementum vel decrementum actionis
<
lb
/>
corporis longinqui
<
emph
type
="
italics
"/>
S,
<
emph.end
type
="
italics
"/>
diminuitur vel augetur. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note137
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
7. Ex præmiſſis conſequitur etiam quod Ellipſeos a cor
<
lb
/>
pore
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
deſcriptæ Axis, ſeu Apſidum linea, quoad motum angula
<
lb
/>
rem progreditur & regreditur per vices, ſed magis tamen progre
<
lb
/>
ditur, & in ſingulis corporis revolutionibus per exceſſum progreſ
<
lb
/>
ſionis fertur in conſequentia. </
s
>
<
s
>Nam vis qua corpus
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
urgetur in
<
lb
/>
corpus
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
in Quadraturis, ubi vis
<
emph
type
="
italics
"/>
MN
<
emph.end
type
="
italics
"/>
evanuit, componitur ex vi
<
lb
/>
<
emph
type
="
italics
"/>
LM
<
emph.end
type
="
italics
"/>
& vi centripeta qua corpus
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
trahit corpus
<
emph
type
="
italics
"/>
P.
<
emph.end
type
="
italics
"/>
Vis prior
<
emph
type
="
italics
"/>
LM,
<
emph.end
type
="
italics
"/>
<
lb
/>
ſi augeatur diſtantia
<
emph
type
="
italics
"/>
PT,
<
emph.end
type
="
italics
"/>
augetur in eadem fere ratione cum hac
<
lb
/>
diſtantia, & vis poſterior decreſcit in duplicata illa ratione, adeo
<
lb
/>
que ſumma harum virium decreſcit in minore quam duplicata ra
<
lb
/>
tione diſtantiæ
<
emph
type
="
italics
"/>
PT,
<
emph.end
type
="
italics
"/>
& propterea (per Corol. </
s
>
<
s
>1. Prop. </
s
>
<
s
>XLV) efficit
<
lb
/>
ut Aux, ſeu Apſis ſumma, regrediatur. </
s
>
<
s
>In Conjunctione vero &
<
lb
/>
Oppoſitione, vis qua corpus
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
urgetur in corpus
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
differentia eſt
<
lb
/>
inter vim qua corpus
<
emph
type
="
italics
"/>
T
<
emph.end
type
="
italics
"/>
trahit corpus
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
& vim
<
emph
type
="
italics
"/>
KL
<
emph.end
type
="
italics
"/>
; & differen
<
lb
/>
tia illa, propterea quod vis
<
emph
type
="
italics
"/>
KL
<
emph.end
type
="
italics
"/>
augetur quamproxime in ratione
<
lb
/>
diſtantiæ
<
emph
type
="
italics
"/>
PT,
<
emph.end
type
="
italics
"/>
decreſcit in majore quam duplicata ratione diſtan
<
lb
/>
tiæ
<
emph
type
="
italics
"/>
PT,
<
emph.end
type
="
italics
"/>
adeoque (per Corol. </
s
>
<
s
>1. Prop.XLV) efficit ut Aux progre
<
lb
/>
diatur. </
s
>
<
s
>In locis inter Syzygias & Quadraturas pendet motus Au
<
lb
/>
gis ex cauſa utraque conjunctim, adeo ut pro hujus vel alterius
<
lb
/>
exceſſu progrediatur ipſa vel regrediatur. </
s
>
<
s
>Unde cum vis
<
emph
type
="
italics
"/>
KL
<
emph.end
type
="
italics
"/>
in
<
lb
/>
Syzygiis ſit quaſi duplo major quam vis
<
emph
type
="
italics
"/>
LM
<
emph.end
type
="
italics
"/>
in Quadraturis, ex
<
lb
/>
ceſſus in tota revolutione erit penes vim
<
emph
type
="
italics
"/>
KL,
<
emph.end
type
="
italics
"/>
transferetque Au
<
lb
/>
gem ſingulis revolutionibus in conſequentia. </
s
>
<
s
>Veritas autem hujus
<
lb
/>
& præcedentis Corollarii facilius intelligetur concipiendo Syſtema
<
lb
/>
corporum duorum
<
emph
type
="
italics
"/>
T, P
<
emph.end
type
="
italics
"/>
corporibus pluribus
<
emph
type
="
italics
"/>
S, S, S,
<
emph.end
type
="
italics
"/>
&c, in Or
<
lb
/>
be
<
emph
type
="
italics
"/>
ESE
<
emph.end
type
="
italics
"/>
conſiſtentibus, undique cingi. </
s
>
<
s
>Namque horum actioni-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>