Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
201
202
203
204
205
206
207
208
209
210
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.001279
">
<
pb
pagenum
="
163
"
xlink:href
="
028/01/203.jpg
"/>
quatenus DE percurretur præcisè triente primi tem
<
lb
/>
poris; & ſecundum tempus integrum non effluet, niſi
<
lb
/>
ſub partem ſpatij octauam, quod tu vis effluere cum
<
lb
/>
ipſa ſecunda: Aut certè tantumdem; & tunc, quia etiam
<
lb
/>
tantumdem aget, qui gradus acquiretur per ipſam
<
lb
/>
DE: recurret idipſum, quod tu refugis; nempe partem
<
lb
/>
DE percurri velocitate dupla illius, qua decurſa fuerit
<
lb
/>
AD. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001280
">
<
emph
type
="
italics
"/>
Sed neutram Propoſitionem probas, aut ex ſtatutis à me
<
lb
/>
principiis vlla ratione deducis: & vt priorem iam ſuprà fal
<
lb
/>
ſam euici; ita nunc iſtam eſſe impoßibilem, hac ratione cui
<
lb
/>
denter demonſtro.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001281
">Imò de Priore quidem apertè probaui; neque tu
<
lb
/>
quicquam aliud, quàm, vt aiunt, principium petiiſti:
<
lb
/>
& cùm te iam dicis euiciſſe eam falſam; notum eſt quæ
<
lb
/>
ſtionem non eſſe, an falſam euiceris, ſed an euiceris
<
lb
/>
non-tuam, ſeu ex tuis principiis minimè deductam. </
s
>
<
s
id
="
s.001282
">De
<
lb
/>
Poſteriore etiam rem feci apertam; neque cùm ego
<
lb
/>
inſtiti nullum eſſe in mea argumentatione Paralo
<
lb
/>
giſmum, tu potuiſti vllum oſtendere: & cum iam ſuſci
<
lb
/>
pis demonſtrandum eam eſſe impoſſibilem, minimè
<
lb
/>
attendis quæſtionem non eſſe, an impoſſibilis ſit, ſed
<
lb
/>
ex tuis ne deducta principiis. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001283
">
<
emph
type
="
italics
"/>
Ex ſtatutis à me principiis, neceſſe eſt, vt graue quodcum
<
lb
/>
que per spatium quodlibet, putà AB deſcendens, æqualibus
<
lb
/>
temporibus spatia continuò maiora, ac maiora decurrat in con
<
lb
/>
tinua ratione dupla.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001284
">
<
emph
type
="
italics
"/>
Ex ſtatutis,
<
emph.end
type
="
italics
"/>
inquis,
<
emph
type
="
italics
"/>
principiis:
<
emph.end
type
="
italics
"/>
imò hæc tibi con
<
lb
/>
cluſio eſt; quæ & falſa eſt, & non probabitur deinceps
<
lb
/>
à te, niſi ex ipſiſinet principiis, quæ vt falſa ſunt, ita </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>