Cavalieri, Buonaventura, Geometria indivisibilibvs continvorvm : noua quadam ratione promota

List of thumbnails

< >
201
201 (181)
202
202 (182)
203
203 (183)
204
204 (184)
205
205 (185)
206
206 (186)
207
207 (187)
208
208 (188)
209
209 (189)
210
210 (190)
< >
page |< < (188) of 569 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div469" type="section" level="1" n="284">
          <p>
            <s xml:id="echoid-s4610" xml:space="preserve">
              <pb o="188" file="0208" n="208" rhead="GEOMETRI Æ"/>
            DX, FH, quod producat in parallelepipedo, AP, rectangulum, E
              <lb/>
              <figure xlink:label="fig-0208-01" xlink:href="fig-0208-01a" number="124">
                <image file="0208-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0208-01"/>
              </figure>
            V, in parallelepipedo, AM, rectan-
              <lb/>
              <note position="left" xlink:label="note-0208-01" xlink:href="note-0208-01a" xml:space="preserve">Coroll. 6.
                <lb/>
              lib. I.</note>
            gulum, EO, & </s>
            <s xml:id="echoid-s4611" xml:space="preserve">in parallelepipedo,
              <lb/>
            NP, rectangulum, RV, per pla-
              <lb/>
              <note position="left" xlink:label="note-0208-02" xlink:href="note-0208-02a" xml:space="preserve">10. Lib. 1.</note>
            num igitur, EV, diuiduntur paral-
              <lb/>
            lelepipeda, AM, NP, in paralle-
              <lb/>
            pipeda, AR, BM, NQ, OP, eſt
              <lb/>
            autem totum parallelepipedum, A
              <lb/>
            P, æquale parallelepipedis, AR, B
              <lb/>
            M, NQ, OP, & </s>
            <s xml:id="echoid-s4612" xml:space="preserve">eſt parallelepipe-
              <lb/>
            dum, AR, ſub, DS, SO, ideſt ſub,
              <lb/>
            DS, TV, & </s>
            <s xml:id="echoid-s4613" xml:space="preserve">parallelepipedum, B
              <lb/>
            M, ſub, ER, RG, hoc eſt ſub, D
              <lb/>
            S, QH, & </s>
            <s xml:id="echoid-s4614" xml:space="preserve">parallelepipedum, NQ,
              <lb/>
            eſt ſub, ST, TV, &</s>
            <s xml:id="echoid-s4615" xml:space="preserve">, OP, eſt ſub,
              <lb/>
            RQ, QH, hoc eſt ſub, ST, QH,
              <lb/>
            ergo parallelepipedum, AP, ideſt
              <lb/>
            ſub, DT, TH, eſt æquale paralle-
              <lb/>
            lepipedis ſub, DS, &</s>
            <s xml:id="echoid-s4616" xml:space="preserve">, TV, & </s>
            <s xml:id="echoid-s4617" xml:space="preserve">ſub,
              <lb/>
            DS, VP, & </s>
            <s xml:id="echoid-s4618" xml:space="preserve">ſub, ST, TV, & </s>
            <s xml:id="echoid-s4619" xml:space="preserve">ſub,
              <lb/>
            ST, QH, ideſt parallelepipedis ſub
              <lb/>
            fingulis partibus altitudinis, & </s>
            <s xml:id="echoid-s4620" xml:space="preserve">ſingulis partibus baſis content@s.</s>
            <s xml:id="echoid-s4621" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div472" type="section" level="1" n="285">
          <head xml:id="echoid-head301" xml:space="preserve">SCHOLIV M.</head>
          <p style="it">
            <s xml:id="echoid-s4622" xml:space="preserve">_C_Ontineri autem parallelepipedum voco ſub tribus rectis eiuſdem
              <lb/>
            angulum ſolidum continentibus, quarum dua qualibet rectum
              <lb/>
            angulum conſtituunt, ſiue ſub earum quauis, & </s>
            <s xml:id="echoid-s4623" xml:space="preserve">parallelogrammo re-
              <lb/>
            ctangulo ſub reliquis duabus; </s>
            <s xml:id="echoid-s4624" xml:space="preserve">ita vt, cum dico parallelepipedum ſub
              <lb/>
            tali recta linea, & </s>
            <s xml:id="echoid-s4625" xml:space="preserve">tali rectangulo, ſiue ſub talibus tribus rectis lineis,
              <lb/>
            intelligam illud parallelepipedum habere angulum ſolidum rectis an-
              <lb/>
            gulis conſtitutum, veluti in iſtis Theorematibus ipſum aſſumo, igitur
              <lb/>
            patet nos ex tribus rectis parallelepipedum continentibus quamlibet
              <lb/>
            poſſe pro altitudine ſumere, & </s>
            <s xml:id="echoid-s4626" xml:space="preserve">rectangulum ſub reliquis duabus pro
              <lb/>
            baſi.</s>
            <s xml:id="echoid-s4627" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div473" type="section" level="1" n="286">
          <head xml:id="echoid-head302" xml:space="preserve">THEOREMA XXXVI. PROPOS. XXXVI.</head>
          <p>
            <s xml:id="echoid-s4628" xml:space="preserve">SI recta linea in vno puncto ſecta ſit vtcumq; </s>
            <s xml:id="echoid-s4629" xml:space="preserve">parallelepi-
              <lb/>
            pedum ſub tota linea, & </s>
            <s xml:id="echoid-s4630" xml:space="preserve">quadrato vnius factarum par-
              <lb/>
            tium erit æquale parallelepipedo ſub tali parte, & </s>
            <s xml:id="echoid-s4631" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>