Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
201
(181)
202
(182)
203
(183)
204
(184)
205
(185)
206
(186)
207
(187)
208
(188)
209
(189)
210
(190)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(188)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div469
"
type
="
section
"
level
="
1
"
n
="
284
">
<
p
>
<
s
xml:id
="
echoid-s4610
"
xml:space
="
preserve
">
<
pb
o
="
188
"
file
="
0208
"
n
="
208
"
rhead
="
GEOMETRI Æ
"/>
DX, FH, quod producat in parallelepipedo, AP, rectangulum, E
<
lb
/>
<
figure
xlink:label
="
fig-0208-01
"
xlink:href
="
fig-0208-01a
"
number
="
124
">
<
image
file
="
0208-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0208-01
"/>
</
figure
>
V, in parallelepipedo, AM, rectan-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0208-01
"
xlink:href
="
note-0208-01a
"
xml:space
="
preserve
">Coroll. 6.
<
lb
/>
lib. I.</
note
>
gulum, EO, & </
s
>
<
s
xml:id
="
echoid-s4611
"
xml:space
="
preserve
">in parallelepipedo,
<
lb
/>
NP, rectangulum, RV, per pla-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0208-02
"
xlink:href
="
note-0208-02a
"
xml:space
="
preserve
">10. Lib. 1.</
note
>
num igitur, EV, diuiduntur paral-
<
lb
/>
lelepipeda, AM, NP, in paralle-
<
lb
/>
pipeda, AR, BM, NQ, OP, eſt
<
lb
/>
autem totum parallelepipedum, A
<
lb
/>
P, æquale parallelepipedis, AR, B
<
lb
/>
M, NQ, OP, & </
s
>
<
s
xml:id
="
echoid-s4612
"
xml:space
="
preserve
">eſt parallelepipe-
<
lb
/>
dum, AR, ſub, DS, SO, ideſt ſub,
<
lb
/>
DS, TV, & </
s
>
<
s
xml:id
="
echoid-s4613
"
xml:space
="
preserve
">parallelepipedum, B
<
lb
/>
M, ſub, ER, RG, hoc eſt ſub, D
<
lb
/>
S, QH, & </
s
>
<
s
xml:id
="
echoid-s4614
"
xml:space
="
preserve
">parallelepipedum, NQ,
<
lb
/>
eſt ſub, ST, TV, &</
s
>
<
s
xml:id
="
echoid-s4615
"
xml:space
="
preserve
">, OP, eſt ſub,
<
lb
/>
RQ, QH, hoc eſt ſub, ST, QH,
<
lb
/>
ergo parallelepipedum, AP, ideſt
<
lb
/>
ſub, DT, TH, eſt æquale paralle-
<
lb
/>
lepipedis ſub, DS, &</
s
>
<
s
xml:id
="
echoid-s4616
"
xml:space
="
preserve
">, TV, & </
s
>
<
s
xml:id
="
echoid-s4617
"
xml:space
="
preserve
">ſub,
<
lb
/>
DS, VP, & </
s
>
<
s
xml:id
="
echoid-s4618
"
xml:space
="
preserve
">ſub, ST, TV, & </
s
>
<
s
xml:id
="
echoid-s4619
"
xml:space
="
preserve
">ſub,
<
lb
/>
ST, QH, ideſt parallelepipedis ſub
<
lb
/>
fingulis partibus altitudinis, & </
s
>
<
s
xml:id
="
echoid-s4620
"
xml:space
="
preserve
">ſingulis partibus baſis content@s.</
s
>
<
s
xml:id
="
echoid-s4621
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div472
"
type
="
section
"
level
="
1
"
n
="
285
">
<
head
xml:id
="
echoid-head301
"
xml:space
="
preserve
">SCHOLIV M.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s4622
"
xml:space
="
preserve
">_C_Ontineri autem parallelepipedum voco ſub tribus rectis eiuſdem
<
lb
/>
angulum ſolidum continentibus, quarum dua qualibet rectum
<
lb
/>
angulum conſtituunt, ſiue ſub earum quauis, & </
s
>
<
s
xml:id
="
echoid-s4623
"
xml:space
="
preserve
">parallelogrammo re-
<
lb
/>
ctangulo ſub reliquis duabus; </
s
>
<
s
xml:id
="
echoid-s4624
"
xml:space
="
preserve
">ita vt, cum dico parallelepipedum ſub
<
lb
/>
tali recta linea, & </
s
>
<
s
xml:id
="
echoid-s4625
"
xml:space
="
preserve
">tali rectangulo, ſiue ſub talibus tribus rectis lineis,
<
lb
/>
intelligam illud parallelepipedum habere angulum ſolidum rectis an-
<
lb
/>
gulis conſtitutum, veluti in iſtis Theorematibus ipſum aſſumo, igitur
<
lb
/>
patet nos ex tribus rectis parallelepipedum continentibus quamlibet
<
lb
/>
poſſe pro altitudine ſumere, & </
s
>
<
s
xml:id
="
echoid-s4626
"
xml:space
="
preserve
">rectangulum ſub reliquis duabus pro
<
lb
/>
baſi.</
s
>
<
s
xml:id
="
echoid-s4627
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div473
"
type
="
section
"
level
="
1
"
n
="
286
">
<
head
xml:id
="
echoid-head302
"
xml:space
="
preserve
">THEOREMA XXXVI. PROPOS. XXXVI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s4628
"
xml:space
="
preserve
">SI recta linea in vno puncto ſecta ſit vtcumq; </
s
>
<
s
xml:id
="
echoid-s4629
"
xml:space
="
preserve
">parallelepi-
<
lb
/>
pedum ſub tota linea, & </
s
>
<
s
xml:id
="
echoid-s4630
"
xml:space
="
preserve
">quadrato vnius factarum par-
<
lb
/>
tium erit æquale parallelepipedo ſub tali parte, & </
s
>
<
s
xml:id
="
echoid-s4631
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>