Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
211
212
213
214
215
216
217
218
219
220
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/213.jpg
"
pagenum
="
185
"/>
<
p
type
="
main
">
<
s
>Etenim ſtantibus quæ in Lemmate & Theoremate noviſſimo
<
lb
/>
<
arrow.to.target
n
="
note161
"/>
conſtructa ſunt, concipe axem Sphæræ
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
dividi in particulas
<
lb
/>
innumeras æquales
<
emph
type
="
italics
"/>
Dd,
<
emph.end
type
="
italics
"/>
& Sphæram totam dividi in totidem
<
lb
/>
laminas Sphæricas concavo-convexas
<
emph
type
="
italics
"/>
EFfe
<
emph.end
type
="
italics
"/>
; & erigatur perpen
<
lb
/>
diculum
<
emph
type
="
italics
"/>
dn.
<
emph.end
type
="
italics
"/>
Per Theorema ſuperius, vis qua lamina
<
emph
type
="
italics
"/>
EFfe
<
emph.end
type
="
italics
"/>
<
lb
/>
trahit corpuſculum
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
eſt ut
<
emph
type
="
italics
"/>
DEqXFf
<
emph.end
type
="
italics
"/>
& vis particulæ unius ad
<
lb
/>
diſtantiam
<
emph
type
="
italics
"/>
PE
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
PF
<
emph.end
type
="
italics
"/>
exercita conjunctim. </
s
>
<
s
>Eſt autem per Lem
<
lb
/>
ma noviſſimum,
<
emph
type
="
italics
"/>
Dd
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
Ff
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
PE
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PS,
<
emph.end
type
="
italics
"/>
& inde
<
emph
type
="
italics
"/>
Ff
<
emph.end
type
="
italics
"/>
æqualis
<
lb
/>
(
<
emph
type
="
italics
"/>
PSXDd/PE
<
emph.end
type
="
italics
"/>
); &
<
emph
type
="
italics
"/>
DEqXFf
<
emph.end
type
="
italics
"/>
æquale
<
emph
type
="
italics
"/>
Dd
<
emph.end
type
="
italics
"/>
in (
<
emph
type
="
italics
"/>
DEqXPS/PE
<
emph.end
type
="
italics
"/>
), & propter
<
lb
/>
ea vis laminæ
<
emph
type
="
italics
"/>
EFfe
<
emph.end
type
="
italics
"/>
eſt ut
<
emph
type
="
italics
"/>
Dd
<
emph.end
type
="
italics
"/>
in (
<
emph
type
="
italics
"/>
DEqXPS/PE
<
emph.end
type
="
italics
"/>
) & vis particulæ ad
<
lb
/>
diſtantiam
<
emph
type
="
italics
"/>
PF
<
emph.end
type
="
italics
"/>
exercita conjunctim, hoc eſt (ex Hypotheſi) ut
<
lb
/>
<
emph
type
="
italics
"/>
DNXDd,
<
emph.end
type
="
italics
"/>
ſeu area evaneſcens
<
emph
type
="
italics
"/>
DNnd.
<
emph.end
type
="
italics
"/>
Sunt igitur laminarum
<
lb
/>
omnium vires in corpus
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
exercitæ, ut areæ omnes
<
emph
type
="
italics
"/>
DNnd,
<
emph.end
type
="
italics
"/>
hoc
<
lb
/>
eſt, Sphæræ vis tota ut area tota
<
emph
type
="
italics
"/>
ABNA. Q.E.D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note161
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
1. Hinc ſi vis centripeta, ad particulas ſingulas tendens,
<
lb
/>
eadem ſemper maneat in omnibus diſtantiis, & fiat
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
(
<
emph
type
="
italics
"/>
DEqXPS/PE
<
emph.end
type
="
italics
"/>
): erit vis tota qua corpuſculum a Sphæra attrahitur,
<
lb
/>
ut area
<
emph
type
="
italics
"/>
ABNA.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
2. Si particularum vis centripeta ſit reciproce ut diſtantia
<
lb
/>
corpuſculi a ſe attracti, & fiat
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
ut (
<
emph
type
="
italics
"/>
DEqXPS/PEq
<
emph.end
type
="
italics
"/>
): erit vis qua
<
lb
/>
corpuſculum
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
a Sphæra tota attrahitur ut area
<
emph
type
="
italics
"/>
ABNA.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
3. Si particularum vis centripeta ſit reciproce ut cubus di
<
lb
/>
ſtantiæ corpuſculi a ſe attracti, & fiat
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
ut (
<
emph
type
="
italics
"/>
DEqXPS/PEqq
<
emph.end
type
="
italics
"/>
): erit
<
lb
/>
vis qua corpuſculum a tota Sphæra attrahitur ut area
<
emph
type
="
italics
"/>
ABNA.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Corol.
<
emph.end
type
="
italics
"/>
4. Et univerſaliter ſi vis centripeta ad ſingulas Sphæræ
<
lb
/>
particulas tendens ponatur eſſe reciproce ut quantitas V, fiat au
<
lb
/>
tem
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
ut (
<
emph
type
="
italics
"/>
DEqXPS/PEXV
<
emph.end
type
="
italics
"/>
); erit vis qua corpuſculum a Sphæra tota
<
lb
/>
attrahitur ut area
<
emph
type
="
italics
"/>
ABNA.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>