Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
211
212
213
214
215
216
217
218
219
220
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/215.jpg
"
pagenum
="
187
"/>
<
arrow.to.target
n
="
note163
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note163
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Exempl.
<
emph.end
type
="
italics
"/>
1. Si vis centripeta ad ſingulas Sphæræ particulas ten
<
lb
/>
dens ſit reciproce ut diſtantia; pro V ſcribe diſtantiam
<
emph
type
="
italics
"/>
PE
<
emph.end
type
="
italics
"/>
; dein
<
lb
/>
2
<
emph
type
="
italics
"/>
PSXLD
<
emph.end
type
="
italics
"/>
pro
<
emph
type
="
italics
"/>
PEq,
<
emph.end
type
="
italics
"/>
& fiet
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
SL-1/2LD-(ALB/2LD).
<
emph.end
type
="
italics
"/>
<
lb
/>
Pone
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
æqualem duplo ejus 2
<
emph
type
="
italics
"/>
SL-LD-(ALB/LD)
<
emph.end
type
="
italics
"/>
: & ordinatæ
<
lb
/>
pars data 2
<
emph
type
="
italics
"/>
SL
<
emph.end
type
="
italics
"/>
ducta in longitudinem
<
emph
type
="
italics
"/>
AB
<
emph.end
type
="
italics
"/>
deſcribet aream rectan
<
lb
/>
gulam 2
<
emph
type
="
italics
"/>
SLXAB
<
emph.end
type
="
italics
"/>
; & pars indefinita
<
emph
type
="
italics
"/>
LD
<
emph.end
type
="
italics
"/>
ducta normaliter in
<
lb
/>
eandem longitudinem per motum continuum, ea lege ut inter mo
<
lb
/>
vendum creſcendo vel decreſcendo æquetur ſemper longitudini
<
lb
/>
<
emph
type
="
italics
"/>
LD,
<
emph.end
type
="
italics
"/>
deſcribet aream (
<
emph
type
="
italics
"/>
LBq-LAq
<
emph.end
type
="
italics
"/>
/2), id eſt, aream
<
emph
type
="
italics
"/>
SLXAB
<
emph.end
type
="
italics
"/>
; quæ
<
lb
/>
ſubducta de area priore 2
<
emph
type
="
italics
"/>
SLXAB
<
emph.end
type
="
italics
"/>
relinquit aream
<
emph
type
="
italics
"/>
SLXAB.
<
emph.end
type
="
italics
"/>
<
lb
/>
Pars autem tertia (
<
emph
type
="
italics
"/>
ALB/LD
<
emph.end
type
="
italics
"/>
) ducta itidem per motum localem norma
<
lb
/>
liter in eandem longitudinem, deſcribet
<
lb
/>
<
figure
id
="
id.039.01.215.1.jpg
"
xlink:href
="
039/01/215/1.jpg
"
number
="
122
"/>
<
lb
/>
aream Hyperbolicam; quæ ſubducta de
<
lb
/>
area
<
emph
type
="
italics
"/>
SLXAB
<
emph.end
type
="
italics
"/>
relinquet aream quæſitam
<
lb
/>
<
emph
type
="
italics
"/>
ABNA.
<
emph.end
type
="
italics
"/>
Unde talis emergit Proble
<
lb
/>
matis conſtructio. </
s
>
<
s
>Ad puncta
<
emph
type
="
italics
"/>
L, A, B
<
emph.end
type
="
italics
"/>
<
lb
/>
erige perpendicula
<
emph
type
="
italics
"/>
Ll, Aa, Bb,
<
emph.end
type
="
italics
"/>
quorum
<
lb
/>
<
emph
type
="
italics
"/>
Aa
<
emph.end
type
="
italics
"/>
ipſi
<
emph
type
="
italics
"/>
LB,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
Bb
<
emph.end
type
="
italics
"/>
ipſi
<
emph
type
="
italics
"/>
LA
<
emph.end
type
="
italics
"/>
æquetur. </
s
>
<
s
>
<
lb
/>
Aſymptotis
<
emph
type
="
italics
"/>
Ll, LB,
<
emph.end
type
="
italics
"/>
per puncta
<
emph
type
="
italics
"/>
a, b
<
emph.end
type
="
italics
"/>
de
<
lb
/>
ſcribatur Hyperbola
<
emph
type
="
italics
"/>
ab.
<
emph.end
type
="
italics
"/>
Et acta chor
<
lb
/>
da
<
emph
type
="
italics
"/>
ba
<
emph.end
type
="
italics
"/>
claudet aream
<
emph
type
="
italics
"/>
aba
<
emph.end
type
="
italics
"/>
areæ quæſitæ
<
lb
/>
<
emph
type
="
italics
"/>
ABNA
<
emph.end
type
="
italics
"/>
æqualem. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Exempl.
<
emph.end
type
="
italics
"/>
2. Si vis centripeta ad ſingulas Sphæræ particulas ten
<
lb
/>
dens ſit reciproce ut cubus diſtantiæ, vel (quod perinde eſt) ut cubus
<
lb
/>
ille applicatus ad planum quodvis datum; ſcribe (
<
emph
type
="
italics
"/>
PEcub/2ASq
<
emph.end
type
="
italics
"/>
) pro V,
<
lb
/>
dein 2
<
emph
type
="
italics
"/>
PSXLD
<
emph.end
type
="
italics
"/>
pro
<
emph
type
="
italics
"/>
PEq
<
emph.end
type
="
italics
"/>
; & fiet
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
(SLXASq/PSXLD)-(ASq/2PS)
<
lb
/>
-(ALBXASq/2PSXLDq),
<
emph.end
type
="
italics
"/>
id eſt (ob continue proportionales
<
emph
type
="
italics
"/>
PS, AS, SI
<
emph.end
type
="
italics
"/>
)
<
lb
/>
ut
<
emph
type
="
italics
"/>
(LSI/LD)-1/2SI-(ALBXSI/2LDq).
<
emph.end
type
="
italics
"/>
Si ducantur hujus partes tres
<
lb
/>
in longitudinem
<
emph
type
="
italics
"/>
AB,
<
emph.end
type
="
italics
"/>
prima (
<
emph
type
="
italics
"/>
LSI/LD
<
emph.end
type
="
italics
"/>
) generabit aream Hyper-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>