Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
211
212
213
214
215
216
217
218
219
220
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
pb
xlink:href
="
039/01/216.jpg
"
pagenum
="
188
"/>
<
p
type
="
main
">
<
s
>
<
arrow.to.target
n
="
note164
"/>
bolicam; ſecunda 1/2
<
emph
type
="
italics
"/>
SI
<
emph.end
type
="
italics
"/>
aream 1/2
<
emph
type
="
italics
"/>
ABXSI
<
emph.end
type
="
italics
"/>
; tertia (
<
emph
type
="
italics
"/>
ALBXSI/2LDq
<
emph.end
type
="
italics
"/>
) are
<
lb
/>
am
<
emph
type
="
italics
"/>
(ALBXSI/2LA)-(ALBXSI/2LB),
<
emph.end
type
="
italics
"/>
id eſt 1/2
<
emph
type
="
italics
"/>
ABXSI.
<
emph.end
type
="
italics
"/>
De prima ſub
<
lb
/>
ducatur ſumma ſecundæ & tertiæ, &
<
lb
/>
<
figure
id
="
id.039.01.216.1.jpg
"
xlink:href
="
039/01/216/1.jpg
"
number
="
123
"/>
<
lb
/>
manebit area quæſita
<
emph
type
="
italics
"/>
ABNA.
<
emph.end
type
="
italics
"/>
Un
<
lb
/>
de talis emergit Problematis conſtru
<
lb
/>
ctio. </
s
>
<
s
>Ad puncta
<
emph
type
="
italics
"/>
L, A, S, B
<
emph.end
type
="
italics
"/>
erige
<
lb
/>
perpendicula
<
emph
type
="
italics
"/>
Ll, Aa, Ss, Bb,
<
emph.end
type
="
italics
"/>
quo
<
lb
/>
rum
<
emph
type
="
italics
"/>
Ss
<
emph.end
type
="
italics
"/>
ipſi
<
emph
type
="
italics
"/>
SI
<
emph.end
type
="
italics
"/>
æquetur, perque pun
<
lb
/>
ctum
<
emph
type
="
italics
"/>
s
<
emph.end
type
="
italics
"/>
Aſymptotis
<
emph
type
="
italics
"/>
Ll, LB
<
emph.end
type
="
italics
"/>
deſcri
<
lb
/>
batur Hyperbola
<
emph
type
="
italics
"/>
asb
<
emph.end
type
="
italics
"/>
occurrens per
<
lb
/>
pendiculis
<
emph
type
="
italics
"/>
Aa, Bb
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
a
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
b
<
emph.end
type
="
italics
"/>
; & rect
<
lb
/>
angulum 2
<
emph
type
="
italics
"/>
ASI
<
emph.end
type
="
italics
"/>
ſubductum de area
<
lb
/>
Hyperbolica
<
emph
type
="
italics
"/>
AasbB
<
emph.end
type
="
italics
"/>
reliquet aream
<
lb
/>
quæſitam
<
emph
type
="
italics
"/>
ABNA.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note164
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Exempl.
<
emph.end
type
="
italics
"/>
3. Si Vis centripeta, ad ſingulas Sphæræ particulas
<
lb
/>
tendens, decreſcit in quadruplicata ratione diſtantiæ a particulis;
<
lb
/>
ſcribe (
<
emph
type
="
italics
"/>
PEqq/2AScub
<
emph.end
type
="
italics
"/>
) pro V, dein √2
<
emph
type
="
italics
"/>
PSXLD
<
emph.end
type
="
italics
"/>
pro
<
emph
type
="
italics
"/>
PE,
<
emph.end
type
="
italics
"/>
& fiet
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
<
emph
type
="
italics
"/>
(SIqXSL/√2SI)X(1/√LDc),-(SIq/2√2SI)X(1/√LD),-(SIqXALB/2√2SI)X(1/√LDqc).
<
emph.end
type
="
italics
"/>
<
lb
/>
Cujus tres partes ductæ in longitudinem
<
emph
type
="
italics
"/>
AB,
<
emph.end
type
="
italics
"/>
producunt areas tot
<
lb
/>
idem,
<
emph
type
="
italics
"/>
viz. (2SIqXSL/√2SI
<
emph.end
type
="
italics
"/>
) in
<
emph
type
="
italics
"/>
(1/√LA)-(1/√LB); (SIq/√2SI)
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
√LB-√LA
<
emph.end
type
="
italics
"/>
;
<
lb
/>
& (
<
emph
type
="
italics
"/>
SIqXALB/3√2SI
<
emph.end
type
="
italics
"/>
) in
<
emph
type
="
italics
"/>
(1/√LAcub)-(1/√LBcub).
<
emph.end
type
="
italics
"/>
Et hæ poſt debitam redu
<
lb
/>
ctionem fiunt
<
emph
type
="
italics
"/>
(2SIqXSL/LI), SIq,
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
SIq+(2SIcub/3LI).
<
emph.end
type
="
italics
"/>
Hæ vero, ſub
<
lb
/>
ctis poſterioribus de priore, evadunt (
<
emph
type
="
italics
"/>
4SIcub/3LI
<
emph.end
type
="
italics
"/>
). Igitur vis tota, qua
<
lb
/>
corpuſculum
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
in Sphæræ centrum trahitur, eſt ut
<
emph
type
="
italics
"/>
(SIcub/PI),
<
emph.end
type
="
italics
"/>
id eſt,
<
lb
/>
reciproce ut
<
emph
type
="
italics
"/>
PS cubXPI.
<
expan
abbr
="
q.
">que</
expan
>
E. I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Eadem Methodo determinari poteſt Attractio corpuſculi ſiti in
<
lb
/>
tra Sphæram, ſed expeditius per Theorema ſequens. </
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>