Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
211
212
213
214
215
216
217
218
219
220
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/217.jpg
"
pagenum
="
189
"/>
<
arrow.to.target
n
="
note165
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note165
"/>
LIBER
<
lb
/>
PRIMUS.</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO LXXXII. THEOREMA XLI.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
In Sphæra centro
<
emph.end
type
="
italics
"/>
S
<
emph
type
="
italics
"/>
intervallo
<
emph.end
type
="
italics
"/>
SA
<
emph
type
="
italics
"/>
deſcripta, ſi capiantur
<
emph.end
type
="
italics
"/>
SI, SA,
<
lb
/>
SP
<
emph
type
="
italics
"/>
continue proportionales: dico quod corpuſculi intra Sphæ
<
lb
/>
ram in loco quovis
<
emph.end
type
="
italics
"/>
I
<
emph
type
="
italics
"/>
attractio est ad attractionem ipſius extra
<
lb
/>
Sphæram in loco
<
emph.end
type
="
italics
"/>
P,
<
emph
type
="
italics
"/>
in ratione compoſita ex ſubduplicata ratione
<
lb
/>
diſtantiarum a centro
<
emph.end
type
="
italics
"/>
IS, PS
<
emph
type
="
italics
"/>
& ſubduplicata ratione virium
<
lb
/>
centripetarum, in locis illis
<
emph.end
type
="
italics
"/>
P
<
emph
type
="
italics
"/>
&
<
emph.end
type
="
italics
"/>
I,
<
emph
type
="
italics
"/>
ad centrum tendentium.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Ut ſi vires centripetæ particularum Sphæræ ſint reciproce ut di
<
lb
/>
ſtantiæ corpuſculi a ſe attracti; vis, qua corpuſculum ſitum in
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
<
lb
/>
trahitur a Sphæra tota, erit ad vim qua trahitur in
<
emph
type
="
italics
"/>
P,
<
emph.end
type
="
italics
"/>
in ratione
<
lb
/>
<
figure
id
="
id.039.01.217.1.jpg
"
xlink:href
="
039/01/217/1.jpg
"
number
="
124
"/>
<
lb
/>
compoſita ex ſubduplicata ratione diſtantiæ
<
emph
type
="
italics
"/>
SI
<
emph.end
type
="
italics
"/>
ad diſtantiam
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
<
lb
/>
& ratione ſubduplicata vis centripetæ in loco
<
emph
type
="
italics
"/>
I,
<
emph.end
type
="
italics
"/>
a particula aliqua
<
lb
/>
in centro oriundæ, ad vim centripetam in loco
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
ab eadem in cen
<
lb
/>
tro particula oriundam, id eſt, ratione ſubduplicata diſtantiarum
<
lb
/>
<
emph
type
="
italics
"/>
SI, SP
<
emph.end
type
="
italics
"/>
ad invicem reciproce. </
s
>
<
s
>Hæ duæ rationes ſubduplicatæ
<
lb
/>
componunt rationem æqualitatis, & propterea attractiones in
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
<
lb
/>
a Sphæra tota factæ æquantur. </
s
>
<
s
>Simili computo, ſi vires particu
<
lb
/>
larum Sphæræ ſunt reciproce in duplicata ratione diſtantiarum, col
<
lb
/>
ligetur quod attractio in
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
ſit ad attractionem in
<
emph
type
="
italics
"/>
P,
<
emph.end
type
="
italics
"/>
ut diſtantia
<
emph
type
="
italics
"/>
SP
<
emph.end
type
="
italics
"/>
<
lb
/>
ad Sphæræ ſemidiametrum
<
emph
type
="
italics
"/>
SA:
<
emph.end
type
="
italics
"/>
Si vires illæ ſunt reciproce in tr
<
lb
/>
plicata ratione diſtantiarum, attractiones in
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
erunt ad invi-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>