Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
211
212
213
214
215
216
217
218
219
220
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/218.jpg
"
pagenum
="
190
"/>
<
arrow.to.target
n
="
note166
"/>
cem ut
<
emph
type
="
italics
"/>
SP quad
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SA quad:
<
emph.end
type
="
italics
"/>
Si in quadruplicata, ut
<
emph
type
="
italics
"/>
SP cub
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
<
emph
type
="
italics
"/>
SA cub.
<
emph.end
type
="
italics
"/>
Unde cum attractio in
<
emph
type
="
italics
"/>
P,
<
emph.end
type
="
italics
"/>
in hoc ultimo caſu, inventa
<
lb
/>
fuit reciproce ut
<
emph
type
="
italics
"/>
PS cubXPI,
<
emph.end
type
="
italics
"/>
attractio in
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
erit reciproce ut
<
lb
/>
<
emph
type
="
italics
"/>
SA cubXPI,
<
emph.end
type
="
italics
"/>
id eſt (ob datum
<
emph
type
="
italics
"/>
SA cub
<
emph.end
type
="
italics
"/>
) reciproce ut
<
emph
type
="
italics
"/>
PI.
<
emph.end
type
="
italics
"/>
Et
<
lb
/>
ſimilis eſt progreſſus in infinitum. </
s
>
<
s
>Theorema vero ſic demon
<
lb
/>
ſtratur. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note166
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Stantibus jam ante conſtructis, & exiſtente corpore in loco
<
lb
/>
quovis
<
emph
type
="
italics
"/>
P,
<
emph.end
type
="
italics
"/>
ordinatim applicata
<
emph
type
="
italics
"/>
DN
<
emph.end
type
="
italics
"/>
inventa fuit ut (
<
emph
type
="
italics
"/>
DEqXPS/PEXV
<
emph.end
type
="
italics
"/>
).
<
lb
/>
Ergo ſi agatur
<
emph
type
="
italics
"/>
IE,
<
emph.end
type
="
italics
"/>
ordinata illa ad alium quemvis locum
<
emph
type
="
italics
"/>
I,
<
emph.end
type
="
italics
"/>
mu
<
lb
/>
tatis mutandis, evadet ut (
<
emph
type
="
italics
"/>
DEqXIS/IEXV
<
emph.end
type
="
italics
"/>
). Pone vires centripetas, e
<
lb
/>
Sphæræ puncto quovis
<
emph
type
="
italics
"/>
E
<
emph.end
type
="
italics
"/>
manantes, eſſe ad invicem in diſtantiis
<
lb
/>
<
emph
type
="
italics
"/>
IE, PE,
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
PE
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
IE
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
,
<
emph.end
type
="
italics
"/>
(ubi numerus
<
emph
type
="
italics
"/>
n
<
emph.end
type
="
italics
"/>
deſignet indicem
<
lb
/>
poteſtatum
<
emph
type
="
italics
"/>
PE
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
IE
<
emph.end
type
="
italics
"/>
) & ordinatæ illæ fient ut (
<
emph
type
="
italics
"/>
DEqXPS/PEXPE
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
<
emph.end
type
="
italics
"/>
) &
<
lb
/>
(
<
emph
type
="
italics
"/>
DEqXIS/IEXIE
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
<
emph.end
type
="
italics
"/>
), quarum ratio ad invicem eſt ut
<
emph
type
="
italics
"/>
PSXIEXIE
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
<
emph
type
="
italics
"/>
ISXPEXPE
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
.
<
emph.end
type
="
italics
"/>
Quoniam ob ſimilia triangula
<
emph
type
="
italics
"/>
SPE, SEI,
<
emph.end
type
="
italics
"/>
fit
<
lb
/>
<
emph
type
="
italics
"/>
IE
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PE
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
IS
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SE
<
emph.end
type
="
italics
"/>
vel
<
emph
type
="
italics
"/>
SA
<
emph.end
type
="
italics
"/>
; pro ratione
<
emph
type
="
italics
"/>
IE
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PE
<
emph.end
type
="
italics
"/>
ſcribe
<
lb
/>
rationem
<
emph
type
="
italics
"/>
IS
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SA
<
emph.end
type
="
italics
"/>
; & ordinatarum ratio evadet
<
emph
type
="
italics
"/>
PSXIE
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
<
emph.end
type
="
italics
"/>
ad
<
lb
/>
<
emph
type
="
italics
"/>
SAXPE
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
.
<
emph.end
type
="
italics
"/>
Sed
<
emph
type
="
italics
"/>
PS
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
SA
<
emph.end
type
="
italics
"/>
ſubduplicata eſt ratio diſtantiarum
<
lb
/>
<
emph
type
="
italics
"/>
PS, SI
<
emph.end
type
="
italics
"/>
; &
<
emph
type
="
italics
"/>
IE
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
<
emph.end
type
="
italics
"/>
ad
<
emph
type
="
italics
"/>
PE
<
emph
type
="
sup
"/>
n
<
emph.end
type
="
sup
"/>
<
emph.end
type
="
italics
"/>
ſubduplicata eſt ratio virium in diſtan
<
lb
/>
tiis
<
emph
type
="
italics
"/>
PS, IS.
<
emph.end
type
="
italics
"/>
Ergo ordinatæ, & propterea areæ quas ordinatæ
<
lb
/>
deſcribunt, hiſque proportionales attractiones, ſunt in ratione com
<
lb
/>
poſita ex ſubduplicatis illis rationibus.
<
emph
type
="
italics
"/>
<
expan
abbr
="
q.
">que</
expan
>
E. D.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO LXXXIII. PROBLEMA XLII.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
<
emph
type
="
italics
"/>
Invenire vim qua corpuſculum in centro Sphæræ locatum ad ejus
<
lb
/>
Segmentum quodcunque attrahitur.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Sit
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
corpus in centro Sphæræ, &
<
emph
type
="
italics
"/>
RBSD
<
emph.end
type
="
italics
"/>
Segmentum ejus
<
lb
/>
plano
<
emph
type
="
italics
"/>
RDS
<
emph.end
type
="
italics
"/>
& ſuperficie Sphærica
<
emph
type
="
italics
"/>
RBS
<
emph.end
type
="
italics
"/>
contentum. </
s
>
<
s
>Superfi
<
lb
/>
cie Sphærica
<
emph
type
="
italics
"/>
EFG
<
emph.end
type
="
italics
"/>
centro
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
deſcripta ſecetur
<
emph
type
="
italics
"/>
DB
<
emph.end
type
="
italics
"/>
in
<
emph
type
="
italics
"/>
F,
<
emph.end
type
="
italics
"/>
ac di
<
lb
/>
ſtinguatur Segmentum in partes
<
emph
type
="
italics
"/>
BREFGS, FEDG.
<
emph.end
type
="
italics
"/>
Sit
<
lb
/>
autem ſuperficies illa non pure Mathematica, ſed Phyſica, pro
<
lb
/>
funditatem habens quam minimam. </
s
>
<
s
>Nominetur iſta profundi-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>