Newton, Isaac
,
Philosophia naturalis principia mathematica
,
1713
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
221
222
223
224
225
226
227
228
229
230
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 524
>
page
|<
<
of 524
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
subchap1
>
<
subchap2
>
<
p
type
="
main
">
<
s
>
<
pb
xlink:href
="
039/01/224.jpg
"
pagenum
="
196
"/>
<
arrow.to.target
n
="
note172
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
>
<
margin.target
id
="
note172
"/>
DE MOTU
<
lb
/>
CORPORUM</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
center
"/>
PROPOSITIO XC. PROBLEMA XLIV.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>
<
emph
type
="
italics
"/>
Si ad ſingula Circuli cujuſcunque puncta tendant vires æquales cen
<
lb
/>
tripetæ, decreſcentes in quacunQ.E.D.ſtantiarum ratione: inve
<
lb
/>
nire vim qua corpuſculum attrahitur ubivis poſitum in recta
<
lb
/>
quæ plano Circuli ad centrum ejus perpendiculariter inſiſtit.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Centro
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
intervallo quovis
<
emph
type
="
italics
"/>
AD,
<
emph.end
type
="
italics
"/>
in plano cui recta
<
emph
type
="
italics
"/>
AP
<
emph.end
type
="
italics
"/>
per
<
lb
/>
pendicularis eſt, deſcribi intelligatur Circulus; & invenienda ſit vis
<
lb
/>
qua corpuſculum quodvis
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
in eundem attrahitur. </
s
>
<
s
>A Circuli puncto
<
lb
/>
quovis
<
emph
type
="
italics
"/>
E
<
emph.end
type
="
italics
"/>
ad corpuſculum attractum
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
agatur recta
<
emph
type
="
italics
"/>
PE:
<
emph.end
type
="
italics
"/>
In re
<
lb
/>
cta
<
emph
type
="
italics
"/>
PA
<
emph.end
type
="
italics
"/>
capiatur
<
emph
type
="
italics
"/>
PF
<
emph.end
type
="
italics
"/>
ipſi
<
emph
type
="
italics
"/>
PE
<
emph.end
type
="
italics
"/>
æ
<
lb
/>
<
figure
id
="
id.039.01.224.1.jpg
"
xlink:href
="
039/01/224/1.jpg
"
number
="
127
"/>
<
lb
/>
qualis, & erigatur normalis
<
emph
type
="
italics
"/>
FK,
<
emph.end
type
="
italics
"/>
<
lb
/>
quæ ſit ut vis qua punctum
<
emph
type
="
italics
"/>
E
<
emph.end
type
="
italics
"/>
tra
<
lb
/>
hit corpuſculum
<
emph
type
="
italics
"/>
P.
<
emph.end
type
="
italics
"/>
Sitque
<
emph
type
="
italics
"/>
IKL
<
emph.end
type
="
italics
"/>
<
lb
/>
curva linea quam punctum
<
emph
type
="
italics
"/>
K
<
emph.end
type
="
italics
"/>
per
<
lb
/>
petuo tangit. </
s
>
<
s
>Occurrat eadem Cir
<
lb
/>
culi plano in
<
emph
type
="
italics
"/>
L.
<
emph.end
type
="
italics
"/>
In
<
emph
type
="
italics
"/>
PA
<
emph.end
type
="
italics
"/>
capiatur
<
lb
/>
<
emph
type
="
italics
"/>
PH
<
emph.end
type
="
italics
"/>
æqualis
<
emph
type
="
italics
"/>
PD,
<
emph.end
type
="
italics
"/>
& erigatur per
<
lb
/>
pendiculum
<
emph
type
="
italics
"/>
HI
<
emph.end
type
="
italics
"/>
curvæ prædictæ
<
lb
/>
occurrens in
<
emph
type
="
italics
"/>
I
<
emph.end
type
="
italics
"/>
; & erit corpuſ
<
lb
/>
culi
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
attractio in Circulum ut area
<
lb
/>
<
emph
type
="
italics
"/>
AHIL
<
emph.end
type
="
italics
"/>
ducta in altitudinem
<
emph
type
="
italics
"/>
AP.
<
lb
/>
<
expan
abbr
="
q.
">que</
expan
>
E. I.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Etenim in
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
capiatur linea quam minima
<
emph
type
="
italics
"/>
Ee.
<
emph.end
type
="
italics
"/>
Jungatur
<
emph
type
="
italics
"/>
Pe,
<
emph.end
type
="
italics
"/>
<
lb
/>
& in
<
emph
type
="
italics
"/>
PE, PA
<
emph.end
type
="
italics
"/>
capiantur
<
emph
type
="
italics
"/>
PC, Pf
<
emph.end
type
="
italics
"/>
ipſi
<
emph
type
="
italics
"/>
Pe
<
emph.end
type
="
italics
"/>
æquales. </
s
>
<
s
>Et quoniam vis,
<
lb
/>
qua annuli punctum quodvis
<
emph
type
="
italics
"/>
E
<
emph.end
type
="
italics
"/>
trahit ad ſe corpus
<
emph
type
="
italics
"/>
P,
<
emph.end
type
="
italics
"/>
ponitur eſſe
<
lb
/>
ut
<
emph
type
="
italics
"/>
FK,
<
emph.end
type
="
italics
"/>
& inde vis qua punctum illud trahit corpus
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
verſus
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
eſt ut
<
lb
/>
(
<
emph
type
="
italics
"/>
APXFK/PE
<
emph.end
type
="
italics
"/>
), & vis qua annulus totus trahit corpus
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
verſus
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
ut
<
lb
/>
annulus & (
<
emph
type
="
italics
"/>
APXFK/PE
<
emph.end
type
="
italics
"/>
) conjunctim; annulus autem iſte eſt ut rectan
<
lb
/>
gulum ſub radio
<
emph
type
="
italics
"/>
AE
<
emph.end
type
="
italics
"/>
& latitudine
<
emph
type
="
italics
"/>
Ee,
<
emph.end
type
="
italics
"/>
& hoc rectangulum (ob pro
<
lb
/>
portionales
<
emph
type
="
italics
"/>
PE
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
AE, Ee
<
emph.end
type
="
italics
"/>
&
<
emph
type
="
italics
"/>
CE
<
emph.end
type
="
italics
"/>
) æquatur rectangulo
<
emph
type
="
italics
"/>
PEXCE
<
emph.end
type
="
italics
"/>
<
lb
/>
ſeu
<
emph
type
="
italics
"/>
PEXFf
<
emph.end
type
="
italics
"/>
; erit vis qua annulus iſte trahit corpus
<
emph
type
="
italics
"/>
P
<
emph.end
type
="
italics
"/>
verſus
<
lb
/>
<
emph
type
="
italics
"/>
A,
<
emph.end
type
="
italics
"/>
ut
<
emph
type
="
italics
"/>
PEXFf
<
emph.end
type
="
italics
"/>
& (
<
emph
type
="
italics
"/>
APXFK/PE
<
emph.end
type
="
italics
"/>
) conjunctim, id eſt, ut contentum
<
lb
/>
<
emph
type
="
italics
"/>
FfXFKXAP,
<
emph.end
type
="
italics
"/>
ſive ut area
<
emph
type
="
italics
"/>
FKkf
<
emph.end
type
="
italics
"/>
ducta in
<
emph
type
="
italics
"/>
AP.
<
emph.end
type
="
italics
"/>
Et propterea
<
lb
/>
ſumma virium, quibus annuli omnes in Circulo, qui centro
<
emph
type
="
italics
"/>
A
<
emph.end
type
="
italics
"/>
& in-</
s
>
</
p
>
</
subchap2
>
</
subchap1
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>