Newton, Isaac, Philosophia naturalis principia mathematica, 1713

List of thumbnails

< >
221
221
222
222
223
223
224
224
225
225
226
226
227
227
228
228
229
229
230
230
< >
page |< < of 524 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <subchap1>
              <subchap2>
                <p type="main">
                  <s>
                    <pb xlink:href="039/01/224.jpg" pagenum="196"/>
                    <arrow.to.target n="note172"/>
                  </s>
                </p>
                <p type="margin">
                  <s>
                    <margin.target id="note172"/>
                  DE MOTU
                    <lb/>
                  CORPORUM</s>
                </p>
                <p type="main">
                  <s>
                    <emph type="center"/>
                  PROPOSITIO XC. PROBLEMA XLIV.
                    <emph.end type="center"/>
                  </s>
                </p>
                <p type="main">
                  <s>
                    <emph type="italics"/>
                  Si ad ſingula Circuli cujuſcunque puncta tendant vires æquales cen­
                    <lb/>
                  tripetæ, decreſcentes in quacunQ.E.D.ſtantiarum ratione: inve­
                    <lb/>
                  nire vim qua corpuſculum attrahitur ubivis poſitum in recta
                    <lb/>
                  quæ plano Circuli ad centrum ejus perpendiculariter inſiſtit.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="main">
                  <s>Centro
                    <emph type="italics"/>
                  A
                    <emph.end type="italics"/>
                  intervallo quovis
                    <emph type="italics"/>
                  AD,
                    <emph.end type="italics"/>
                  in plano cui recta
                    <emph type="italics"/>
                  AP
                    <emph.end type="italics"/>
                  per­
                    <lb/>
                  pendicularis eſt, deſcribi intelligatur Circulus; & invenienda ſit vis
                    <lb/>
                  qua corpuſculum quodvis
                    <emph type="italics"/>
                  P
                    <emph.end type="italics"/>
                  in eundem attrahitur. </s>
                  <s>A Circuli puncto
                    <lb/>
                  quovis
                    <emph type="italics"/>
                  E
                    <emph.end type="italics"/>
                  ad corpuſculum attractum
                    <emph type="italics"/>
                  P
                    <emph.end type="italics"/>
                  agatur recta
                    <emph type="italics"/>
                  PE:
                    <emph.end type="italics"/>
                  In re­
                    <lb/>
                  cta
                    <emph type="italics"/>
                  PA
                    <emph.end type="italics"/>
                  capiatur
                    <emph type="italics"/>
                  PF
                    <emph.end type="italics"/>
                  ipſi
                    <emph type="italics"/>
                  PE
                    <emph.end type="italics"/>
                  æ­
                    <lb/>
                    <figure id="id.039.01.224.1.jpg" xlink:href="039/01/224/1.jpg" number="127"/>
                    <lb/>
                  qualis, & erigatur normalis
                    <emph type="italics"/>
                  FK,
                    <emph.end type="italics"/>
                    <lb/>
                  quæ ſit ut vis qua punctum
                    <emph type="italics"/>
                  E
                    <emph.end type="italics"/>
                  tra­
                    <lb/>
                  hit corpuſculum
                    <emph type="italics"/>
                  P.
                    <emph.end type="italics"/>
                  Sitque
                    <emph type="italics"/>
                  IKL
                    <emph.end type="italics"/>
                    <lb/>
                  curva linea quam punctum
                    <emph type="italics"/>
                  K
                    <emph.end type="italics"/>
                  per­
                    <lb/>
                  petuo tangit. </s>
                  <s>Occurrat eadem Cir­
                    <lb/>
                  culi plano in
                    <emph type="italics"/>
                  L.
                    <emph.end type="italics"/>
                  In
                    <emph type="italics"/>
                  PA
                    <emph.end type="italics"/>
                  capiatur
                    <lb/>
                    <emph type="italics"/>
                  PH
                    <emph.end type="italics"/>
                  æqualis
                    <emph type="italics"/>
                  PD,
                    <emph.end type="italics"/>
                  & erigatur per­
                    <lb/>
                  pendiculum
                    <emph type="italics"/>
                  HI
                    <emph.end type="italics"/>
                  curvæ prædictæ
                    <lb/>
                  occurrens in
                    <emph type="italics"/>
                  I
                    <emph.end type="italics"/>
                  ; & erit corpuſ­
                    <lb/>
                  culi
                    <emph type="italics"/>
                  P
                    <emph.end type="italics"/>
                  attractio in Circulum ut area
                    <lb/>
                    <emph type="italics"/>
                  AHIL
                    <emph.end type="italics"/>
                  ducta in altitudinem
                    <emph type="italics"/>
                  AP.
                    <lb/>
                    <expan abbr="q.">que</expan>
                  E. I.
                    <emph.end type="italics"/>
                  </s>
                </p>
                <p type="main">
                  <s>Etenim in
                    <emph type="italics"/>
                  AE
                    <emph.end type="italics"/>
                  capiatur linea quam minima
                    <emph type="italics"/>
                  Ee.
                    <emph.end type="italics"/>
                  Jungatur
                    <emph type="italics"/>
                  Pe,
                    <emph.end type="italics"/>
                    <lb/>
                  & in
                    <emph type="italics"/>
                  PE, PA
                    <emph.end type="italics"/>
                  capiantur
                    <emph type="italics"/>
                  PC, Pf
                    <emph.end type="italics"/>
                  ipſi
                    <emph type="italics"/>
                  Pe
                    <emph.end type="italics"/>
                  æquales. </s>
                  <s>Et quoniam vis,
                    <lb/>
                  qua annuli punctum quodvis
                    <emph type="italics"/>
                  E
                    <emph.end type="italics"/>
                  trahit ad ſe corpus
                    <emph type="italics"/>
                  P,
                    <emph.end type="italics"/>
                  ponitur eſſe
                    <lb/>
                  ut
                    <emph type="italics"/>
                  FK,
                    <emph.end type="italics"/>
                  & inde vis qua punctum illud trahit corpus
                    <emph type="italics"/>
                  P
                    <emph.end type="italics"/>
                  verſus
                    <emph type="italics"/>
                  A
                    <emph.end type="italics"/>
                  eſt ut
                    <lb/>
                  (
                    <emph type="italics"/>
                  APXFK/PE
                    <emph.end type="italics"/>
                  ), & vis qua annulus totus trahit corpus
                    <emph type="italics"/>
                  P
                    <emph.end type="italics"/>
                  verſus
                    <emph type="italics"/>
                  A,
                    <emph.end type="italics"/>
                  ut
                    <lb/>
                  annulus & (
                    <emph type="italics"/>
                  APXFK/PE
                    <emph.end type="italics"/>
                  ) conjunctim; annulus autem iſte eſt ut rectan­
                    <lb/>
                  gulum ſub radio
                    <emph type="italics"/>
                  AE
                    <emph.end type="italics"/>
                  & latitudine
                    <emph type="italics"/>
                  Ee,
                    <emph.end type="italics"/>
                  & hoc rectangulum (ob pro­
                    <lb/>
                  portionales
                    <emph type="italics"/>
                  PE
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  AE, Ee
                    <emph.end type="italics"/>
                  &
                    <emph type="italics"/>
                  CE
                    <emph.end type="italics"/>
                  ) æquatur rectangulo
                    <emph type="italics"/>
                  PEXCE
                    <emph.end type="italics"/>
                    <lb/>
                  ſeu
                    <emph type="italics"/>
                  PEXFf
                    <emph.end type="italics"/>
                  ; erit vis qua annulus iſte trahit corpus
                    <emph type="italics"/>
                  P
                    <emph.end type="italics"/>
                  verſus
                    <lb/>
                    <emph type="italics"/>
                  A,
                    <emph.end type="italics"/>
                  ut
                    <emph type="italics"/>
                  PEXFf
                    <emph.end type="italics"/>
                  & (
                    <emph type="italics"/>
                  APXFK/PE
                    <emph.end type="italics"/>
                  ) conjunctim, id eſt, ut contentum
                    <lb/>
                    <emph type="italics"/>
                  FfXFKXAP,
                    <emph.end type="italics"/>
                  ſive ut area
                    <emph type="italics"/>
                  FKkf
                    <emph.end type="italics"/>
                  ducta in
                    <emph type="italics"/>
                  AP.
                    <emph.end type="italics"/>
                  Et propterea
                    <lb/>
                  ſumma virium, quibus annuli omnes in Circulo, qui centro
                    <emph type="italics"/>
                  A
                    <emph.end type="italics"/>
                  & in-</s>
                </p>
              </subchap2>
            </subchap1>
          </chap>
        </body>
      </text>
    </archimedes>