Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
221
(201)
222
(202)
223
(203)
224
(204)
225
(205)
226
(206)
227
(207)
228
(208)
229
(209)
230
(210)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(204)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div506
"
type
="
section
"
level
="
1
"
n
="
304
">
<
p
>
<
s
xml:id
="
echoid-s5030
"
xml:space
="
preserve
">
<
pb
o
="
204
"
file
="
0224
"
n
="
224
"
rhead
="
GEOMETRIÆ
"/>
ſunt vt quadratum, VR, ad quadratum, CR, .</
s
>
<
s
xml:id
="
echoid-s5031
"
xml:space
="
preserve
">ſ. </
s
>
<
s
xml:id
="
echoid-s5032
"
xml:space
="
preserve
">vt rectangulum,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0224-01
"
xlink:href
="
note-0224-01a
"
xml:space
="
preserve
">Ex 40. l. 1.
<
lb
/>
& eiuidẽ
<
lb
/>
Scholio.</
note
>
AOD, vel quadratum, AO, ad rectangulum, DRA, omnia au-
<
lb
/>
tem quadrata parallelogrammi, BR, ad omnia quadrata ſemipor-
<
lb
/>
<
figure
xlink:label
="
fig-0224-01
"
xlink:href
="
fig-0224-01a
"
number
="
137
">
<
image
file
="
0224-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0224-01
"/>
</
figure
>
tionis, ICRM, ſunt vt rectangulum, D
<
lb
/>
RA, ad rectangulum ſub, DR, & </
s
>
<
s
xml:id
="
echoid-s5033
"
xml:space
="
preserve
">ſub
<
lb
/>
compoſita ex, {1/2}, RM, & </
s
>
<
s
xml:id
="
echoid-s5034
"
xml:space
="
preserve
">ex, MA, vna
<
lb
/>
cum rectangulo ſub, RM, & </
s
>
<
s
xml:id
="
echoid-s5035
"
xml:space
="
preserve
">ſub com-
<
lb
/>
poſita ex, {1/6}, RM, &</
s
>
<
s
xml:id
="
echoid-s5036
"
xml:space
="
preserve
">, {1/2}, MA, ergo ex
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0224-02
"
xlink:href
="
note-0224-02a
"
xml:space
="
preserve
">Ex anter.</
note
>
æquali omnia quadrata parallelogram-
<
lb
/>
mi, GR, ad omnia quadrata ſemiportio-
<
lb
/>
nis, ICRM, vel omnia quadrata paral-
<
lb
/>
lelogrammi, GX, ad omnia quadrata
<
lb
/>
portionis, ICFS, erunt vt quadratum,
<
lb
/>
AO, ad rectangulum ſub, DR, & </
s
>
<
s
xml:id
="
echoid-s5037
"
xml:space
="
preserve
">ſub compoſita ex, {1/2}, RM, & </
s
>
<
s
xml:id
="
echoid-s5038
"
xml:space
="
preserve
">
<
lb
/>
ex, MA, vna cum rectangulo ſub, RM, & </
s
>
<
s
xml:id
="
echoid-s5039
"
xml:space
="
preserve
">ſub compoſita ex, {1/6}, R
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0224-03
"
xlink:href
="
note-0224-03a
"
xml:space
="
preserve
">Ex 9. & B.
<
lb
/>
Cor. 22.
<
lb
/>
lib. 2.</
note
>
M, &</
s
>
<
s
xml:id
="
echoid-s5040
"
xml:space
="
preserve
">, {1/2}, MA; </
s
>
<
s
xml:id
="
echoid-s5041
"
xml:space
="
preserve
">quod etiam pater, ſi parallelogrammum, GX, non
<
lb
/>
ſit circa axim, vel diametrum, MR, quod erat oſtendendum.</
s
>
<
s
xml:id
="
echoid-s5042
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div508
"
type
="
section
"
level
="
1
"
n
="
305
">
<
head
xml:id
="
echoid-head322
"
xml:space
="
preserve
">THEOREMA V. PROPOS. V.</
head
>
<
p
>
<
s
xml:id
="
echoid-s5043
"
xml:space
="
preserve
">SI in circulo, vel ellipſi ducantur coniugati axes, vel dia-
<
lb
/>
metri, in altera autem eorundem ſit tamquam in baſi pa-
<
lb
/>
rallelogrammum circa eundem axim, vel diametrum cum cir-
<
lb
/>
culo, vel ellipſi, circa quæm ſit etiam triangulus, ſed in baſi
<
lb
/>
oppoſita baſi parallelogrammi, ſumatur autem in dicta axi,
<
lb
/>
vel diametro vtcunq; </
s
>
<
s
xml:id
="
echoid-s5044
"
xml:space
="
preserve
">punctum, per quod baſibus dictis aga-
<
lb
/>
tur parallela; </
s
>
<
s
xml:id
="
echoid-s5045
"
xml:space
="
preserve
">quadratum eiuſdem parallelæ trianguli lateri-
<
lb
/>
bus interceptæ æquabitur reliquo quadrati eius, quæ inter-
<
lb
/>
cipitur lateribus parallelogrammi, dempto quadrato eius,
<
lb
/>
quæ intra circulum, vel ellipſim concludetur.</
s
>
<
s
xml:id
="
echoid-s5046
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5047
"
xml:space
="
preserve
">Sit circulus, vel ellipſis, BDHF, eius coniugati axes, vel diame-
<
lb
/>
tri, BH, DF, in altera autem earum, vtin, DF, tanquam in baſi,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s5048
"
xml:space
="
preserve
">circa axim, vel diametrum, BE, ſit parallelogrammum, AF, cir-
<
lb
/>
ca eundem verſo4;</
s
>
<
s
xml:id
="
echoid-s5049
"
xml:space
="
preserve
">, ſed in baſi, AC, ſit triangulum, AEC, ſumatur
<
lb
/>
autem in, BE, vtcunque punctum, M, per quodipſi, DF, agatur
<
lb
/>
parallela, VR, ſecans curuam, DBF, in, T, I, & </
s
>
<
s
xml:id
="
echoid-s5050
"
xml:space
="
preserve
">latera trianguli,
<
lb
/>
AEC, in, S, N. </
s
>
<
s
xml:id
="
echoid-s5051
"
xml:space
="
preserve
">Dico ergo quadratum, SN, æquari reliquo qua-
<
lb
/>
drati, VR, dempto quadrato, TI. </
s
>
<
s
xml:id
="
echoid-s5052
"
xml:space
="
preserve
">Nam rectangulum, HEB, ad
<
lb
/>
rectangulum, HMB, eſt vt quadratum, FE, vel quadratum, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>