Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
221
(201)
222
(202)
223
(203)
224
(204)
225
(205)
226
(206)
227
(207)
228
(208)
229
(209)
230
(210)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(208)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div512
"
type
="
section
"
level
="
1
"
n
="
307
">
<
p
>
<
s
xml:id
="
echoid-s5116
"
xml:space
="
preserve
">
<
pb
o
="
208
"
file
="
0228
"
n
="
228
"
rhead
="
GEOMETRIÆ
"/>
pedum ſub baſi quadrato, AC, altitudine, CO, vel, CX, (quod
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0228-01
"
xlink:href
="
note-0228-01a
"
xml:space
="
preserve
">Per C. Co
<
lb
/>
rollar. 4
<
lb
/>
G@n. 34.
<
lb
/>
lib. 2.</
note
>
eſt dimidium cubi, AC,) ad parallelepipedum ſub baſi quadrato, A
<
lb
/>
E, altitudine, EX, (quæ eſt dimidia altitudinis parallelepipedi ſub
<
lb
/>
baſi quadrato, AE, altitudine dupla, EC, & </
s
>
<
s
xml:id
="
echoid-s5117
"
xml:space
="
preserve
">ipſa, CA, ſimul) pa-
<
lb
/>
tet ergo, quod omnia quadrata circuli, vel ellipſis, ABCD, ad om-
<
lb
/>
nia quadrata portionis, BAD, erunt vt parallelepipedum ſub baſi
<
lb
/>
quadrato, AC, altitudine, CX, ad parallelepipedum ſub baſi qua-
<
lb
/>
drato, AE, altitudine, EX, vel (vt probauimus) vt cubus, AC, ad
<
lb
/>
parallelepipedum ſub baſi quadrato, AE, altitudine linea compo-
<
lb
/>
ſita ex dupla, EC, & </
s
>
<
s
xml:id
="
echoid-s5118
"
xml:space
="
preserve
">ex, AC, .</
s
>
<
s
xml:id
="
echoid-s5119
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s5120
"
xml:space
="
preserve
">ad parallelepipedum ſub baſi qua-
<
lb
/>
drato, AE, altitudine tripla, EC, cum cubo, AE, quæ erant de-
<
lb
/>
monſtranda.</
s
>
<
s
xml:id
="
echoid-s5121
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div515
"
type
="
section
"
level
="
1
"
n
="
308
">
<
head
xml:id
="
echoid-head325
"
xml:space
="
preserve
">COROLLARIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s5122
"
xml:space
="
preserve
">HInc etiam patet portionis, BCD, omnia quadrata ad omnia qua-
<
lb
/>
drata portionis, BAD, eſſe vt parallelepipedum ſub baſi qua-
<
lb
/>
drato, CE, altitudine autem, EAO, ad parallelepipedum ſub baſi qua-
<
lb
/>
drato, AE, altitudine autem, ECO, patet ergo ſi circulus, vel ellipſis
<
lb
/>
per applicatam ad eorum axim, vel di@metrum in duas portiones vt-
<
lb
/>
cumq; </
s
>
<
s
xml:id
="
echoid-s5123
"
xml:space
="
preserve
">diuidantur, quæq; </
s
>
<
s
xml:id
="
echoid-s5124
"
xml:space
="
preserve
">ſumatur pro regula, quod nota erit ratio om-
<
lb
/>
nium quadratorum vtriuſque portionis inter ſe.</
s
>
<
s
xml:id
="
echoid-s5125
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div516
"
type
="
section
"
level
="
1
"
n
="
309
">
<
head
xml:id
="
echoid-head326
"
xml:space
="
preserve
">THEOREMA VII. PROPOS. VII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s5126
"
xml:space
="
preserve
">SI in circulo, vel ellipſi duæ ad eundem axim, vel diame-
<
lb
/>
trum ordinatim applicentur rectæ lineæ; </
s
>
<
s
xml:id
="
echoid-s5127
"
xml:space
="
preserve
">Omnia qua-
<
lb
/>
drata vnius portionis (regula baſi) ad omnia quadrata alte-
<
lb
/>
rius portionis erunt, vt parallelepipedum ſub baſi quadrato
<
lb
/>
axis, vel diametri illius, & </
s
>
<
s
xml:id
="
echoid-s5128
"
xml:space
="
preserve
">ſub compoſita ex axi, vel dia-
<
lb
/>
metro reliquæ portionis, & </
s
>
<
s
xml:id
="
echoid-s5129
"
xml:space
="
preserve
">dimidia totius, ad parallelepi-
<
lb
/>
pedum ſub baſi quadrato axis, vel diametri alterius portio-
<
lb
/>
nis, & </
s
>
<
s
xml:id
="
echoid-s5130
"
xml:space
="
preserve
">ſub compoſita ex axi, vel diametro reliquæ portio-
<
lb
/>
nis, & </
s
>
<
s
xml:id
="
echoid-s5131
"
xml:space
="
preserve
">dimidia totius.</
s
>
<
s
xml:id
="
echoid-s5132
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5133
"
xml:space
="
preserve
">Sit circulus, vel ellipſis, ACND, cuius axis, vel diameter, AN,
<
lb
/>
centrum, O, duæ ad ipſum vtcunq; </
s
>
<
s
xml:id
="
echoid-s5134
"
xml:space
="
preserve
">ordinatim applicatæ ſint, BF,
<
lb
/>
CD, ſit autem producta, AN, in, X, ita vt, XN, ſit æqualis, N
<
lb
/>
O; </
s
>
<
s
xml:id
="
echoid-s5135
"
xml:space
="
preserve
">regula vero alterutra applicatarum, vt, CD. </
s
>
<
s
xml:id
="
echoid-s5136
"
xml:space
="
preserve
">Dico ergo omnia
<
lb
/>
quadrata portionis, BAF, ad omnia quadrata portionis, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>