Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
221
(201)
222
(202)
223
(203)
224
(204)
225
(205)
226
(206)
227
(207)
228
(208)
229
(209)
230
(210)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(209)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div516
"
type
="
section
"
level
="
1
"
n
="
309
">
<
p
>
<
s
xml:id
="
echoid-s5136
"
xml:space
="
preserve
">
<
pb
o
="
209
"
file
="
0229
"
n
="
229
"
rhead
="
LIBER III.
"/>
eſſe, vt parallelepipedum ſub baſi quadrato, AE, altitudine autem,
<
lb
/>
<
figure
xlink:label
="
fig-0229-01
"
xlink:href
="
fig-0229-01a
"
number
="
140
">
<
image
file
="
0229-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0229-01
"/>
</
figure
>
EX, ad parallelepipedum ſub baſi quadrato, AM,
<
lb
/>
altitudine, MX. </
s
>
<
s
xml:id
="
echoid-s5137
"
xml:space
="
preserve
">Nam omnia quadrata portionis,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0229-01
"
xlink:href
="
note-0229-01a
"
xml:space
="
preserve
">Ex antec.</
note
>
BAF, ad omnia quadrata circuli, vel ellipſis, A
<
lb
/>
CND, ſunt vt parallelepipedum ſub baſi quadra-
<
lb
/>
to, AE, altitudine, EX, ad parallelepipedum ſub
<
lb
/>
baſi quadrato, AN, altitudine, NX, item om-
<
lb
/>
nia quadrata circuli, vel ellipſis, ACND, ad om-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0229-02
"
xlink:href
="
note-0229-02a
"
xml:space
="
preserve
">Ex antec.</
note
>
nia quadrata portionis, CAD, ſunt vt parallele-
<
lb
/>
pipedum ſub baſi quadrato, AN, altitudine, N
<
lb
/>
X, ad parallelepipedum ſub baſi quadrato, AM,
<
lb
/>
altitudine, MX, ergo ex æquali omnia quadrato portionis, BAF,
<
lb
/>
ad omnia quadrata portionis, CAD, erunt vt parallelepipedum ſub
<
lb
/>
baſi quadrato, AE, altitudine, EX, ad parallelepipedum ſub baſi
<
lb
/>
quadrato, AM, altitudine, MX, quod erat oſtendendum.</
s
>
<
s
xml:id
="
echoid-s5138
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div518
"
type
="
section
"
level
="
1
"
n
="
310
">
<
head
xml:id
="
echoid-head327
"
xml:space
="
preserve
">PROBLEMA I PROPOS. VIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s5139
"
xml:space
="
preserve
">ADato circulo, vel ellipſi portionem abſcindere per li-
<
lb
/>
neam ad eiuſdem axim, vel diametrum ordinatim ap-
<
lb
/>
plicatam, cuiusomnia quadrata ad omnia quadrata trian-
<
lb
/>
guli in eadem baſi, & </
s
>
<
s
xml:id
="
echoid-s5140
"
xml:space
="
preserve
">altitudine cum ipſa portione, habeant
<
lb
/>
rationem datam; </
s
>
<
s
xml:id
="
echoid-s5141
"
xml:space
="
preserve
">oportet autem hanc eſſe maiorem ſexqui-
<
lb
/>
altera, exiſtente regula ipſa ordinatim applicata.</
s
>
<
s
xml:id
="
echoid-s5142
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5143
"
xml:space
="
preserve
">Sit circulus, vel ellipſis, ADME, axis, vel diameter, AM, cen-
<
lb
/>
trum, F, oportet igitur ad ipſum axim, vel diametrum, lineam or-
<
lb
/>
<
figure
xlink:label
="
fig-0229-02
"
xlink:href
="
fig-0229-02a
"
number
="
141
">
<
image
file
="
0229-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0229-02
"/>
</
figure
>
dinatim applicare, quæ ab ipſo circulo,
<
lb
/>
vel ellipſi abſcindat, portionem, cuius
<
lb
/>
omnia quadrata (regula ipſa applicata)
<
lb
/>
ad omnia quadrata trianguli in eadem
<
lb
/>
baſi, & </
s
>
<
s
xml:id
="
echoid-s5144
"
xml:space
="
preserve
">altitudine cum ipſa habeant ra-
<
lb
/>
tionem datam; </
s
>
<
s
xml:id
="
echoid-s5145
"
xml:space
="
preserve
">hanc dico prius oporte-
<
lb
/>
re eſſe maiorem ſexquialtera, nam cu-
<
lb
/>
iuslibet abſciſſæ portionis (vt oſtenſum
<
lb
/>
eſt) omnia quadrata ad omnia quadrata
<
lb
/>
trianguli in eadem baſi, & </
s
>
<
s
xml:id
="
echoid-s5146
"
xml:space
="
preserve
">altitudine
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0229-03
"
xlink:href
="
note-0229-03a
"
xml:space
="
preserve
">1. Huius.</
note
>
cum ipſa ſunt, vt compoſita ex dimidia
<
lb
/>
totius axis, vel diametri, & </
s
>
<
s
xml:id
="
echoid-s5147
"
xml:space
="
preserve
">ex diametro
<
lb
/>
reliquæ portionis, ad axim, vel diame-
<
lb
/>
trum reliquæ portionis, & </
s
>
<
s
xml:id
="
echoid-s5148
"
xml:space
="
preserve
">diuidendo exceſſus omnium </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>