Gassendi, Pierre, De proportione qua gravia decidentia accelerantur, 1646

List of thumbnails

< >
231
231
232
232
233
233
234
234
235
235
236
236
237
237
238
238
239
239
240
240
< >
page |< < of 360 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s id="s.001517">
                <pb pagenum="195" xlink:href="028/01/235.jpg"/>
              tiorum, hebetiorumque, & adiumentorum, quibus
                <lb/>
              poſſunt ſubtiliora omnibus rebus antè perceptis per­
                <lb/>
              cipere; & ſine ſpe tamen, vt vnquam naturæ ſubtilita­
                <lb/>
              tem aſſequantur. </s>
              <s id="s.001518">Itaque, vt in hac diſtinctione hærea­
                <lb/>
              mus: tunc igitur erit finita diuiſio, ſeu
                <expan abbr="peruentũ">peruentum</expan>
              erit ad
                <lb/>
              eam diuiſionem, vltra
                <expan abbr="quã">quam</expan>
              ſubdiuidere in duo dimidia
                <lb/>
              non liceat, cùm AS erit non Mathematicè quidem,
                <lb/>
              ſed Phyſicè tamen indiuiſibilis: atqui ſi AS ſit Phyſi­
                <lb/>
              cè indiuiſibilis: erit igitur & pars SD indiuiſibilis, tan­
                <lb/>
              quam ipſi AS æqualis? </s>
              <s id="s.001519">An ergo, ſi pars SD ſit in­
                <lb/>
              diuiſibilis Phyſicè, diſtingues in ea trientem, quadran­
                <lb/>
              tem, & cæteras Phyſicas parteis iis temporibus percur­
                <lb/>
              rendas, quæ menſuræ ſint conſequentium, hoc eſt ipſi
                <lb/>
              AD æqualium? </s>
              <s id="s.001520">Cùm non poſſis: vide quàm fruſtrà
                <lb/>
              eò confugeris, vt
                <emph type="italics"/>
              ſtandum alicubi ſit, quòd diuiſio eſſe infi­
                <lb/>
              nita non poßit.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s id="s.001521">Hanc iterùm difficultatem quaſi præſentiens, præ­
                <lb/>
              uenienſque,
                <emph type="italics"/>
              quid ni,
                <emph.end type="italics"/>
              inquis,
                <emph type="italics"/>
              iam primùm in ea parte con­
                <lb/>
              ſiſtamus, ex qua totius motus accelerati ratio perfectè intelli­
                <lb/>
              gatur?
                <emph.end type="italics"/>
              Dicere ergo vis, non eſſe exſpectandum, ad
                <lb/>
              hoc vt conſiſtamus, quovſque ad eam diuiſionem per­
                <lb/>
              uenerimus, ex qua partes AS, & SD ſint duo puncta
                <lb/>
              Phyſica, ſeu duæ Phyſicè indiuiſibiles partes: ſed in illa
                <lb/>
              ſtandum, in qua tam AS, quàm SD conſtent adhùc ex
                <lb/>
              tot Phyſicis partibus,
                <emph type="italics"/>
              vt ex ijs ratio accelerati motus per­
                <lb/>
              fectè intelligatur.
                <emph.end type="italics"/>
              </s>
              <s id="s.001522"> At imprimis, ſi ita ſit, fruſtrà ergo
                <lb/>
              dicis alicubi ſtandum,
                <emph type="italics"/>
              quòd diuiſio eſſe infinita non poßit:
                <emph.end type="italics"/>
                <lb/>
              cùm etiam diuiſione exſiſtente non infinita, progredi
                <lb/>
              adhûc vlteriùs liceat: atque idcircò vigent adhûc in­
                <lb/>
              commoda omnia, quæ obiecta ſunt: quandò poteſt </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>