Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
231
232
233
234
235
236
237
238
239
240
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.001517
">
<
pb
pagenum
="
195
"
xlink:href
="
028/01/235.jpg
"/>
tiorum, hebetiorumque, & adiumentorum, quibus
<
lb
/>
poſſunt ſubtiliora omnibus rebus antè perceptis per
<
lb
/>
cipere; & ſine ſpe tamen, vt vnquam naturæ ſubtilita
<
lb
/>
tem aſſequantur. </
s
>
<
s
id
="
s.001518
">Itaque, vt in hac diſtinctione hærea
<
lb
/>
mus: tunc igitur erit finita diuiſio, ſeu
<
expan
abbr
="
peruentũ
">peruentum</
expan
>
erit ad
<
lb
/>
eam diuiſionem, vltra
<
expan
abbr
="
quã
">quam</
expan
>
ſubdiuidere in duo dimidia
<
lb
/>
non liceat, cùm AS erit non Mathematicè quidem,
<
lb
/>
ſed Phyſicè tamen indiuiſibilis: atqui ſi AS ſit Phyſi
<
lb
/>
cè indiuiſibilis: erit igitur & pars SD indiuiſibilis, tan
<
lb
/>
quam ipſi AS æqualis? </
s
>
<
s
id
="
s.001519
">An ergo, ſi pars SD ſit in
<
lb
/>
diuiſibilis Phyſicè, diſtingues in ea trientem, quadran
<
lb
/>
tem, & cæteras Phyſicas parteis iis temporibus percur
<
lb
/>
rendas, quæ menſuræ ſint conſequentium, hoc eſt ipſi
<
lb
/>
AD æqualium? </
s
>
<
s
id
="
s.001520
">Cùm non poſſis: vide quàm fruſtrà
<
lb
/>
eò confugeris, vt
<
emph
type
="
italics
"/>
ſtandum alicubi ſit, quòd diuiſio eſſe infi
<
lb
/>
nita non poßit.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.001521
">Hanc iterùm difficultatem quaſi præſentiens, præ
<
lb
/>
uenienſque,
<
emph
type
="
italics
"/>
quid ni,
<
emph.end
type
="
italics
"/>
inquis,
<
emph
type
="
italics
"/>
iam primùm in ea parte con
<
lb
/>
ſiſtamus, ex qua totius motus accelerati ratio perfectè intelli
<
lb
/>
gatur?
<
emph.end
type
="
italics
"/>
Dicere ergo vis, non eſſe exſpectandum, ad
<
lb
/>
hoc vt conſiſtamus, quovſque ad eam diuiſionem per
<
lb
/>
uenerimus, ex qua partes AS, & SD ſint duo puncta
<
lb
/>
Phyſica, ſeu duæ Phyſicè indiuiſibiles partes: ſed in illa
<
lb
/>
ſtandum, in qua tam AS, quàm SD conſtent adhùc ex
<
lb
/>
tot Phyſicis partibus,
<
emph
type
="
italics
"/>
vt ex ijs ratio accelerati motus per
<
lb
/>
fectè intelligatur.
<
emph.end
type
="
italics
"/>
</
s
>
<
s
id
="
s.001522
"> At imprimis, ſi ita ſit, fruſtrà ergo
<
lb
/>
dicis alicubi ſtandum,
<
emph
type
="
italics
"/>
quòd diuiſio eſſe infinita non poßit:
<
emph.end
type
="
italics
"/>
<
lb
/>
cùm etiam diuiſione exſiſtente non infinita, progredi
<
lb
/>
adhûc vlteriùs liceat: atque idcircò vigent adhûc in
<
lb
/>
commoda omnia, quæ obiecta ſunt: quandò poteſt </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>