Cardano, Girolamo
,
De subtilitate
,
1663
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 403
>
231
232
233
234
235
236
237
238
239
240
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 403
>
page
|<
<
of 403
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
pb
pagenum
="
589
"
xlink:href
="
016/01/236.jpg
"/>
<
p
type
="
main
">
<
s
id
="
s.010728
">Et rurſus, dum è dextra in ſiniſtram tendis,
<
lb
/>
hoc aliud in ſepto:
<
lb
/>
<
emph
type
="
quote
"/>
<
emph
type
="
italics
"/>
Magnus veſtit honor, latus loquor hoc nationi.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
quote
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010729
">Simili curioſitate Plautus vſus eſt, in con
<
lb
/>
ſcribendo nomine, argumenti fabulæ per
<
lb
/>
capita dictionum, quæ in initio argumenti
<
lb
/>
ipſius fabulæ poſita ſunt, literas primas col
<
lb
/>
ligendo. </
s
>
<
s
id
="
s.010730
">Sed illa magis Comœdum decue
<
lb
/>
runt, quàm ſi ex compoſito, hanc ratio
<
lb
/>
nem totus ſe illi dedens iniſſet. </
s
>
<
s
id
="
s.010731
">Velut Hug
<
lb
/>
baldus Gallus, monachus Eluomenſis, ex or
<
lb
/>
dine beati Benedicti, qui centum triginta
<
lb
/>
ſex carminibus, quorum ſingulæ dictiones
<
lb
/>
elemento C, initium ſumebant, Laudes Ca
<
lb
/>
roli Calui Francorum Regis ſcripſit, quorum
<
lb
/>
initium eſt:
<
lb
/>
<
emph
type
="
quote
"/>
<
emph
type
="
italics
"/>
Carmina clariſona caluis cantate camœnæ.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
quote
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010732
">Simili illud Placentij Porcij, qui Pu
<
lb
/>
gnam porcorum trecentis penè carmini
<
lb
/>
bus cecinit: quorum ſingulæ dictiones ex
<
lb
/>
P, littera initium ſumunt. </
s
>
<
s
id
="
s.010733
">Extat opus im
<
lb
/>
preſſum non inelegans, apud me: cuius ini
<
lb
/>
tium eſt:
<
lb
/>
<
emph
type
="
quote
"/>
<
emph
type
="
italics
"/>
Plandite porcelli, porcorum pigra propago.
<
emph.end
type
="
italics
"/>
<
emph.end
type
="
quote
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010734
">Sed ſi hæc coniunctam in ſe habe rent
<
lb
/>
aliquam vtilitatem, ſumma dignum laude
<
lb
/>
hominem arbitrarer: nunc verò tam operam
<
lb
/>
irridere licet, quàm etiam ingenium admi
<
lb
/>
rari. </
s
>
<
s
id
="
s.010735
">Placere poteſt exemplum, copia horum
<
lb
/>
certè tædium parit. </
s
>
<
s
id
="
s.010736
">Hócque vnum fermè eſt
<
lb
/>
commune his, quorum nullus inter homines
<
lb
/>
vſus eſt. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010737
">Atque hæc penè ſimilia induſtriæ egregij
<
lb
/>
illius viri, qui cicere, cùm quemcunque
<
lb
/>
vellet locum feriret, ciceris modium ab A
<
lb
/>
lexandro promeruit: magis auerſatus ina
<
lb
/>
nem laborem, quàm induſtriam admira
<
lb
/>
tus. </
s
>
<
s
id
="
s.010738
">Eiuſdem etiam, ſed aliquantò vtilio
<
lb
/>
ris argumenti ſunt libri illi quatuor Geo
<
lb
/>
<
arrow.to.target
n
="
marg1508
"/>
<
lb
/>
metrici Procli in Euclidis elementa: nihil
<
lb
/>
enim nouum docent, ob idque ad artem non
<
lb
/>
ſpectant. </
s
>
<
s
id
="
s.010739
">Quia tamen varia eſt ſubtilitas il
<
lb
/>
la, non vnius prorſus generis, vt in Rhabano
<
lb
/>
& Lullio, ideò non omninò vt inutiles abii
<
lb
/>
ci, & ſperni debent. </
s
>
<
s
id
="
s.010740
">Nam & ipſius ſubtilita
<
lb
/>
tis cùm plura fuerint exempla, ars quædam
<
lb
/>
etiam erit.
<
lb
/>
<
arrow.to.target
n
="
marg1509
"/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.010741
">
<
margin.target
id
="
marg1508
"/>
Procli libri
<
lb
/>
non ſpectant
<
lb
/>
ad artem
<
lb
/>
<
expan
abbr
="
Geometricã
">Geometricam</
expan
>
.</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.010742
">
<
margin.target
id
="
marg1509
"/>
Quomodo
<
lb
/>
quæcunque
<
lb
/>
in elementis
<
lb
/>
Euclid. </
s
>
<
s
id
="
s.010743
">de
<
lb
/>
monſtrata
<
lb
/>
ſunt, abſque
<
lb
/>
vlla propoſi
<
lb
/>
ti vnius tan
<
lb
/>
tum circuli
<
lb
/>
mutatione
<
lb
/>
oſtendi poſ
<
lb
/>
ſint.</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010744
">Igitur conſimili argumento quale fuit
<
lb
/>
Procli, oſtentatione potius iuuenili, quàm
<
lb
/>
vtilitate manifeſta, tum ego, tum Ludo
<
lb
/>
uicus Ferrarius paucis in diebus inuenimus,
<
lb
/>
quónam pacto quæcunque ab Euclide de
<
lb
/>
monſtrantur, variata circini latitudine, à
<
lb
/>
nobis ſub quacunque latitudine illius à con
<
lb
/>
tradicente propoſita inuariabilique, præ
<
lb
/>
ter circulorum ſolam inſcriptionem ac cir
<
lb
/>
cumſcriptionem, perfectè à nobis poſſent
<
lb
/>
oſtendi. </
s
>
<
s
id
="
s.010745
">Et quamvis dum hæc ſcriberemus,
<
lb
/>
Ludouicus ipſe hanc totam demonſtratio
<
lb
/>
nem typis exceptam edidiſſet optimè, quia
<
lb
/>
tamen opus illud contentionis gratia ſcri
<
lb
/>
ptum eſt, haud arbitror ſuperfuturum, cùm
<
lb
/>
nihil aliud fermè egregij contineat: & ſi
<
lb
/>
quædam ſint egregia, ſeorſum tamen poſi
<
lb
/>
ta ſunt, & non vnius generis, ita poſtu
<
lb
/>
lante materia: quo fit vt operæ pretium eſſe
<
lb
/>
duxerim, ne quandoque tam rarum ſubtili
<
lb
/>
tatis exemplum periret, illud denuò hîc ſub
<
lb
/>
iicere. </
s
>
<
s
id
="
s.010746
">Sed quomodo? </
s
>
<
s
id
="
s.010747
">breuius demonſtratio
<
lb
/>
nibus: ne abhorrentes à Geometricis tædio
<
lb
/>
capiantur. </
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010748
">Igitur primò, quarta primi Elemento
<
arrow.to.target
n
="
marg1510
"/>
<
lb
/>
rum, velut ab Euclide demonſtratur, cùm
<
lb
/>
nullius præcedentis alterius propoſitionis
<
lb
/>
auxilio indigeat, erit demonſtranda. </
s
>
<
s
id
="
s.010749
">Inde
<
lb
/>
quinta: nam quòd ad demonſtrationem at
<
lb
/>
tinet, ſola quarta, quam primam vocabi
<
lb
/>
mus, vt quintam ſecundam, indiget: quò
<
lb
/>
verò ad protrahendum lineas, circuli am
<
lb
/>
plitudo nobis propoſita ſufficiet, cùm lineas
<
lb
/>
quantumlibet in directum producere liceat.
<
lb
/>
</
s
>
<
s
id
="
s.010750
">Inde tertia erit nobis, quæ ſeptima & quar
<
lb
/>
ta, qua octaua: nam etſi ab Euclide ex ſe
<
lb
/>
ptima demonſtretur, tamen & ſine abſur
<
lb
/>
do ſic poterit demonſtrari. </
s
>
<
s
id
="
s.010751
">Collocato alte
<
lb
/>
ro trigono ex aduerſo ſuper baſim, lineáque
<
lb
/>
à vertice ad verticem recta ducta: nam con
<
lb
/>
ſtat, vt etiam à Proclo oſtenditur in tertio
<
lb
/>
libro ex ſecunda, & animi communi ſen
<
lb
/>
tentia, trigonos habere angulos ſupremos,
<
lb
/>
& latera illos continentia æqualia, igitur
<
lb
/>
ex prima erunt æquales, transferre autem
<
lb
/>
trigonos licet, cùm Euclides in quarta ſua
<
lb
/>
Propoſitione id admittat. </
s
>
<
s
id
="
s.010752
">Quarta nobis erit
<
lb
/>
nona Euclidis in primo libro: nam de il
<
lb
/>
lo intelligo, donec alterius libri mentio
<
lb
/>
nem adiecero. </
s
>
<
s
id
="
s.010753
">Igitur factis lineis angu
<
lb
/>
lum continentibus æqualibus iuxta circini
<
lb
/>
latitudinem propoſitum, circulos duos ſe
<
lb
/>
cundum datam latitudinem factis centris
<
lb
/>
terminis linearum deſcribam, ſecantes ſe
<
lb
/>
in angulo propoſito & ex aduerſo, ad quam
<
lb
/>
ſectionem è centris circulorum ductis li
<
lb
/>
neis, inde è ſectione ad ſectionem ex ter
<
lb
/>
tia harum, & circuli diffinitione illicò pa
<
lb
/>
tet propoſitum. </
s
>
<
s
id
="
s.010754
">Quòd ſi quis adeò peruer
<
lb
/>
ſus ſit, vt ne admittat circulos alibi ſe
<
lb
/>
ſecare, quàm in angulo, ducta linea in
<
lb
/>
ter fines angulum continentium recta, to
<
lb
/>
ties vtrunque circulos repetemus, donec
<
lb
/>
ſe tandem, aut ſecent, aut contingant. </
s
>
<
s
id
="
s.010755
">Per
<
lb
/>
<
arrow.to.target
n
="
marg1511
"/>
<
lb
/>
ſecundam & primam harum aſſequemur,
<
lb
/>
tandémque per tertiam propoſitum angu
<
lb
/>
lum, ducta ex angulo, ad aduerſam circulo
<
lb
/>
rum ſectionem recta, bifariàm. </
s
>
<
s
id
="
s.010756
">ſecari. </
s
>
<
s
id
="
s.010757
">Quin
<
lb
/>
tam ſtatuemus decimam Euclidis, per præ
<
lb
/>
cedentis modum, vim ac figuram demon
<
lb
/>
ſtratam. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.010758
">
<
margin.target
id
="
marg1510
"/>
<
lb
/>
Primi Eucl.
<
lb
/>
</
s
>
<
s
id
="
s.010759
">noſtræ.
<
lb
/>
</
s
>
<
s
id
="
s.010760
">4 1
<
lb
/>
5 2
<
lb
/>
7 3
<
lb
/>
8 4
<
lb
/>
</
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.010761
">
<
margin.target
id
="
marg1511
"/>
<
lb
/>
Eucl. </
s
>
<
s
id
="
s.010762
">noſtræ.
<
lb
/>
</
s
>
<
s
id
="
s.010763
">10 6
<
lb
/>
11 7
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010764
">Sexta erit vndecima illius: hinc inde ex
<
lb
/>
puncto dato, quantum eſt circuli latitudo
<
lb
/>
capiemus: vtraque verò per quintam diui
<
lb
/>
ſa bifariàm, erunt partes quæ ad punctum
<
lb
/>
iungentur dimidium latitudinis circini, am
<
lb
/>
bæque iunctæ ipſa latitudo, vnde extremis
<
lb
/>
illius lineæ pro centris poſitis, vbi circuli
<
lb
/>
ſe interſecabunt, linea ducta ad punctum
<
lb
/>
datum, ex tertia harum perpendicularis erit.
<
lb
/>
</
s
>
<
s
id
="
s.010765
">Inde decimamtertiam, decimamquartam, &
<
lb
/>
decimamquintam Euclidis, ſeptimam, octa
<
lb
/>
<
arrow.to.target
n
="
marg1512
"/>
<
lb
/>
uam, & nonam harum ſtatuemus, cùm nullis
<
lb
/>
aliis, niſi demonſtratis, iam hîc indigeant. </
s
>
</
p
>
<
p
type
="
margin
">
<
s
id
="
s.010766
">
<
margin.target
id
="
marg1512
"/>
<
lb
/>
13 8
<
lb
/>
14 9
<
lb
/>
15 10
<
lb
/>
Pars tertia.
<
lb
/>
</
s
>
<
s
id
="
s.010767
">11.
<
lb
/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010768
">
<
emph
type
="
center
"/>
PARS TERTIÆ DECIMÆ.
<
emph.end
type
="
center
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
id
="
s.010769
">Decima propoſitio erit hæc: Propoſitis
<
lb
/>
duabus lineis inæqualibus ſe tangentibus,
<
lb
/>
de maiore quantum æquale ſit minori abſ
<
lb
/>
cindere: eſtque hæc pars tertiæ Euclidis: at </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>