Gassendi, Pierre
,
De proportione qua gravia decidentia accelerantur
,
1646
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
231
232
233
234
235
236
237
238
239
240
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
>
page
|<
<
of 360
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
p
type
="
main
">
<
s
id
="
s.001522
">
<
pb
pagenum
="
196
"
xlink:href
="
028/01/236.jpg
"/>
adhûc pars AS, ſubdiuidi in plura, pluraque dimidia.
<
lb
/>
</
s
>
<
s
id
="
s.001523
">Deinde, cùm in dimidio SD, tot requiris parteis, vt
<
lb
/>
<
emph
type
="
italics
"/>
ex ipſis ratio accelerati motus perfectè intelligatur:
<
emph.end
type
="
italics
"/>
quot
<
lb
/>
nam quæſo ſunt, quas requiris? </
s
>
<
s
id
="
s.001524
">An aliquot pauculas,
<
lb
/>
v. c. ſex, quas nempe recenſes, dum rationem motus
<
lb
/>
accelerati explicas per trientem, quadrantem, per quin
<
lb
/>
tam, perque ſextam parteis tantum? </
s
>
<
s
id
="
s.001525
">Sanè vel neſciens
<
lb
/>
tot requiris, vt innumerabiles ſint; & tum abſis longiſ
<
lb
/>
ſimè ab eo, vt cauſſeris ſtandum, quòd
<
emph
type
="
italics
"/>
diuiſio eſſe infinita
<
lb
/>
non poßit,
<
emph.end
type
="
italics
"/>
quaſi vel in fine, vel certe non longè à fine
<
lb
/>
conſiſtendum ſit: tum etiam ab eo, vt ex cognitis par
<
lb
/>
tibus
<
emph
type
="
italics
"/>
ratio motus intelligatur.
<
emph.end
type
="
italics
"/>
</
s
>
<
s
id
="
s.001526
"> Rem vt experiamur, ac
<
lb
/>
cipiamus, ecce, caſum globi ferrei (quod tuum poſteà
<
lb
/>
exemplum eſt) ex cælo Lunæ in centrum terræ: atque
<
lb
/>
in ipſo talem partem,
<
emph
type
="
italics
"/>
in qua iam primum,
<
emph.end
type
="
italics
"/>
vt ais,
<
emph
type
="
italics
"/>
conſiſta
<
lb
/>
mus.
<
emph.end
type
="
italics
"/>
Cùm tuo ex decreto, menſura durationis om
<
lb
/>
nium partium iſti primæ æqualium ſit æqualis duratio
<
lb
/>
totidem minutiorum partium ſigillatim acceptarum
<
lb
/>
in inferiore eius dimidio: ergo inferius eius dimidium
<
lb
/>
diuiſibile eſt in tot parteis, non Mathematicas, men
<
lb
/>
teve confictas, ſed Phyſicas, ſiue in ipſa rerum natura
<
lb
/>
exſiſtenteis, quot partes ſunt à cælo Lunæ, vſque in
<
lb
/>
centrum terræ, ipſi AD æquales. </
s
>
<
s
id
="
s.001527
">Hæ verò partes quot
<
lb
/>
nam ſunt? </
s
>
<
s
id
="
s.001528
">Certè, cùm aſſumendo pedes (vt facis) pro
<
lb
/>
Galilei cubitis, admittas à Luna in centrum nonagies
<
lb
/>
octies mille myriadas pedum: oportebit, etiam ſi pri
<
lb
/>
mam partem AD, non minorem pede habeas, vt di
<
lb
/>
cas dimidium illius inferius, ſeu ſemi-pedem totidem
<
lb
/>
pati diuiſiones, & continere totidem parteis Phyſicas
<
lb
/>
non mente confictas. </
s
>
<
s
id
="
s.001529
">Quid verò ſi acceperis partem </
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>