Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
231
(211)
232
(212)
233
(213)
234
(214)
235
(215)
236
(216)
237
(217)
238
(218)
239
(219)
240
(220)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(216)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div536
"
type
="
section
"
level
="
1
"
n
="
320
">
<
pb
o
="
216
"
file
="
0236
"
n
="
236
"
rhead
="
GEOMETRIÆ
"/>
</
div
>
<
div
xml:id
="
echoid-div537
"
type
="
section
"
level
="
1
"
n
="
321
">
<
head
xml:id
="
echoid-head338
"
xml:space
="
preserve
">E. SECTIO V.</
head
>
<
note
position
="
left
"
xml:space
="
preserve
">E.</
note
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s5252
"
xml:space
="
preserve
">_S_Imiles ellipſes ſunt in dupla ratione ſuorum axium, vel diametrc-
<
lb
/>
rum homologarum, vel vt corundem quadrata.</
s
>
<
s
xml:id
="
echoid-s5253
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div538
"
type
="
section
"
level
="
1
"
n
="
322
">
<
head
xml:id
="
echoid-head339
"
xml:space
="
preserve
">F. SECTIO VI.</
head
>
<
note
position
="
left
"
xml:space
="
preserve
">F.</
note
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s5254
"
xml:space
="
preserve
">_P_Ro circulis autem (vt ſupra dictum eſt) hoc tantum habetur, quod
<
lb
/>
ſint vt diametrorum quadrata, vel in dupla ratione diametrorum;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s5255
"
xml:space
="
preserve
">neque illis alia variatio contingit, ſicuti ellipſibus competere ex ſupe-
<
lb
/>
rioribus compertum eſt.</
s
>
<
s
xml:id
="
echoid-s5256
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div539
"
type
="
section
"
level
="
1
"
n
="
323
">
<
head
xml:id
="
echoid-head340
"
xml:space
="
preserve
">THEOREMA XI. PROPOS. XII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s5257
"
xml:space
="
preserve
">QVęcunq; </
s
>
<
s
xml:id
="
echoid-s5258
"
xml:space
="
preserve
">de omnibus quadratis parallelogrammorum,
<
lb
/>
appoſitas ibi conditiones habentium, oſtenſa ſunt in
<
lb
/>
Theor. </
s
>
<
s
xml:id
="
echoid-s5259
"
xml:space
="
preserve
">9.</
s
>
<
s
xml:id
="
echoid-s5260
"
xml:space
="
preserve
">10.</
s
>
<
s
xml:id
="
echoid-s5261
"
xml:space
="
preserve
">11.</
s
>
<
s
xml:id
="
echoid-s5262
"
xml:space
="
preserve
">12.</
s
>
<
s
xml:id
="
echoid-s5263
"
xml:space
="
preserve
">13. </
s
>
<
s
xml:id
="
echoid-s5264
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s5265
"
xml:space
="
preserve
">2 eadem de omnibus quadratis
<
lb
/>
circulorum, vel ellipſium illis inſcriptorum (regula in
<
lb
/>
vtriſque altero axium, vel diametrorum coniugatarum) ve-
<
lb
/>
rificabuntur.</
s
>
<
s
xml:id
="
echoid-s5266
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s5267
"
xml:space
="
preserve
">Patet hæc propoſitio, nam omnia quadrata circulorum, vel el-
<
lb
/>
lipſium (regula altero axium, vel diametrorum) ſunt ſubſexquial-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0236-03
"
xlink:href
="
note-0236-03a
"
xml:space
="
preserve
">Coroll.1.
<
lb
/>
buius.</
note
>
tera omnium quadratorum parallelogrammorum, quibus inſcri-
<
lb
/>
buntur, latera habentium dictis axibus, vel diametris parallela; </
s
>
<
s
xml:id
="
echoid-s5268
"
xml:space
="
preserve
">ha-
<
lb
/>
bentibus autem illis appoſitas ibi conditiones in ſuis lateribus, eędem
<
lb
/>
adſunt in axibus, vel diametris circulorum, vel ellipſium, quibus
<
lb
/>
circumſcribuntur, & </
s
>
<
s
xml:id
="
echoid-s5269
"
xml:space
="
preserve
">è contra; </
s
>
<
s
xml:id
="
echoid-s5270
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s5271
"
xml:space
="
preserve
">ideò concluſiones, quæ collectæ
<
lb
/>
ſunt pro illis in dictis Theor. </
s
>
<
s
xml:id
="
echoid-s5272
"
xml:space
="
preserve
">etiam pro omnibus quadratis circulo-
<
lb
/>
rum, vel ellipſium illis inſcriptorum, vt demonſtratę recipi poſſunt,
<
lb
/>
cum fint eorum partes proportionales, ijſdem regulis pro omnibus
<
lb
/>
quadratis circulorum, vel ellipſium, & </
s
>
<
s
xml:id
="
echoid-s5273
"
xml:space
="
preserve
">pro omnibus quadra-
<
lb
/>
tis parallelogrammorum illis circumſeriptorum, aſſumptis,
<
lb
/>
quod, &</
s
>
<
s
xml:id
="
echoid-s5274
"
xml:space
="
preserve
">c.</
s
>
<
s
xml:id
="
echoid-s5275
"
xml:space
="
preserve
"/>
</
p
>
<
figure
number
="
147
">
<
image
file
="
0236-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0236-01
"/>
</
figure
>
</
div
>
</
text
>
</
echo
>